5 results on '"Sheri P. Silfies"'
Search Results
2. Trunk postural control during unstable sitting among individuals with and without low back pain: A systematic review with an individual participant data meta-analysis.
- Author
-
Mansour Abdullah Alshehri, Hosam Alzahrani, Wolbert van den Hoorn, David M Klyne, Albert H Vette, Brad D Hendershot, Brad W R Roberts, Christian Larivière, David Barbado, Francisco J Vera-Garcia, Jaap H van Dieen, Jacek Cholewicki, Maury A Nussbaum, Michael L Madigan, Norman Peter Reeves, Sheri P Silfies, Stephen H M Brown, and Paul W Hodges
- Subjects
Medicine ,Science - Abstract
IntroductionSitting on an unstable surface is a common paradigm to investigate trunk postural control among individuals with low back pain (LBP), by minimizing the influence lower extremities on balance control. Outcomes of many small studies are inconsistent (e.g., some find differences between groups while others do not), potentially due to confounding factors such as age, sex, body mass index [BMI], or clinical presentations. We conducted a systematic review with an individual participant data (IPD) meta-analysis to investigate whether trunk postural control differs between those with and without LBP, and whether the difference between groups is impacted by vision and potential confounding factors.MethodsWe completed this review according to PRISMA-IPD guidelines. The literature was screened (up to 7th September 2023) from five electronic databases: MEDLINE, CINAHL, Embase, Scopus, and Web of Science Core Collection. Outcome measures were extracted that describe unstable seat movements, specifically centre of pressure or seat angle. Our main analyses included: 1) a two-stage IPD meta-analysis to assess the difference between groups and their interaction with age, sex, BMI, and vision on trunk postural control; 2) and a two-stage IPD meta-regression to determine the effects of LBP clinical features (pain intensity, disability, pain catastrophizing, and fear-avoidance beliefs) on trunk postural control.ResultsForty studies (1,821 participants) were included for the descriptive analysis and 24 studies (1,050 participants) were included for the IPD analysis. IPD meta-analyses revealed three main findings: (a) trunk postural control was worse (higher root mean square displacement [RMSdispl], range, and long-term diffusion; lower mean power frequency) among individuals with than without LBP; (b) trunk postural control deteriorated more (higher RMSdispl, short- and long-term diffusion) among individuals with than without LBP when vision was removed; and (c) older age and higher BMI had greater adverse impacts on trunk postural control (higher short-term diffusion; longer time and distance coordinates of the critical point) among individuals with than without LBP. IPD meta-regressions indicated no associations between the limited LBP clinical features that could be considered and trunk postural control.ConclusionTrunk postural control appears to be inferior among individuals with LBP, which was indicated by increased seat movements and some evidence of trunk stiffening. These findings are likely explained by delayed or less accurate corrective responses.Systematic review registrationThis review has been registered in PROSPERO (registration number: CRD42021124658).
- Published
- 2024
- Full Text
- View/download PDF
3. Association between seated trunk control and cortical sensorimotor white matter brain changes in patients with chronic low back pain.
- Author
-
John R Gilliam, Pradeep K Sahu, Jennifer M C Vendemia, and Sheri P Silfies
- Subjects
Medicine ,Science - Abstract
Trunk control involves integration of sensorimotor information in the brain. Individuals with chronic low back pain (cLBP) have impaired trunk control and show differences in brain structure and function in sensorimotor areas compared with healthy controls (HC). However, the relationship between brain structure and trunk control in this group is not well understood. This cross-sectional study aimed to compare seated trunk control and sensorimotor white matter (WM) structure in people with cLBP and HC and explore relationships between WM properties and trunk control in each group. Thirty-two people with cLBP and 35 HC were tested sitting on an unstable chair to isolate trunk control; performance was measured using the 95% confidence ellipse area (CEA95) of center-of-pressure tracing. A WM network between cortical sensorimotor regions of interest was derived using probabilistic tractography. WM microstructure and anatomical connectivity between cortical sensorimotor regions were assessed. A mixed-model ANOVA showed that people with cLBP had worse trunk control than HC (F = 12.96; p < .001; ηp2 = .091). There were no differences in WM microstructure or anatomical connectivity between groups (p = 0.564 to 0.940). In the cLBP group, WM microstructure was moderately correlated (|r| = .456 to .565; p ≤ .009) with trunk control. Additionally, the cLBP group demonstrated stronger relationships between anatomical connectivity and trunk control (|r| = .377 to .618 p < .034) compared to the HC group. Unique to the cLBP group, WM connectivity between right somatosensory and left motor areas highlights the importance of interhemispheric information exchange for trunk control. Parietal areas associated with attention and spatial reference frames were also relevant to trunk control. These findings suggest that people with cLBP adopt a more cortically driven sensorimotor integration strategy for trunk control. Future research should replicate these findings and identify interventions to effectively modulate this strategy.
- Published
- 2024
- Full Text
- View/download PDF
4. Test-retest reliability and concurrent validity of knee extensor strength measured by a novel device incorporated into a weight stack machine vs. handheld and isokinetic dynamometry.
- Author
-
Pradeep K Sahu, Noel Goodstadt, Arun Ramakrishnan, and Sheri P Silfies
- Subjects
Medicine ,Science - Abstract
BackgroundThe current clinical gold standard for assessing isometric quadriceps muscle strength is an isokinetic dynamometer (IKD). However, in clinics without an IKD, clinicians default to using handheld dynamometers (HHD), which are less reliable and accurate than the IKD, particularly for large muscle groups. A novel device (ND) was developed that locks the weight stack of weight machines, and measures forces applied to the machine, turning this equipment into an isometric dynamometer. The objectives of this study were to characterize the test-retest reliability of the ND, determine the within-day and between-days inter-rater reliability and concurrent validity compared with that of the HHD, in healthy volunteers (HV) and individuals with knee osteoarthritis (OA) for measuring knee extensors isometric muscle force.Materials and methods29 healthy (age = 28.4 ± 7.4 years) and 15 knee OA (age = 37.6 ± 13.4 years) participants completed three maximum force isometric strength testing trials on dominant side knee extensor muscles on three devices (ND, HHD, and IKD) in two separate sessions by two raters. The maximum force (Fmax) produced, and the force-time series were recorded. Reliability and validity were assessed using Intraclass Correlation Coefficient (ICC), Bland-Altman Plots, Pearson's r, and cross-correlations.ResultsThe ND demonstrated excellent test-retest reliability (ICC2,3 = 0.97). The within-day (ICC2,3 = 0.88) and between-day inter-rater reliability (ICC2,3 = 0.87) was good for HHD. The ND showed excellent within-day (ICC2,3 = 0.93) and good between-day (ICC2,3 = 0.89) inter-rater reliability. The Bland-Altman analysis revealed HHD systematic bias and underestimation of force particularly with quadriceps force values exceeding 450 N. Mean differences were found in maximum force between HHD vs. IKD (MDabs = 58 N, p < .001) but not the HHD vs. ND (MDabs = 24 N, p = .267) or ND vs. IKD (MDabs = 34 N, p = .051). The concurrent validity of Fmax (r = 0.81) and force-time curve correlation (0.96 ± 0.05) were the highest between the ND and IKD.ConclusionsThe ND's test-retest reliability and concurrent validity make it a potential strength assessment tool with utility in physical therapy and fitness settings for large muscle groups such as the knee extensors.
- Published
- 2024
- Full Text
- View/download PDF
5. Test-retest reliability and construct validity of trunk extensor muscle force modulation accuracy.
- Author
-
John R Gilliam, Ahyoung Song, Pradeep K Sahu, and Sheri P Silfies
- Subjects
Medicine ,Science - Abstract
Low back pain is associated with changes in trunk muscle structure and function and motor control impairments. Voluntary force modulation (FM) of trunk muscles is a unique and under-investigated motor control characteristic. One of the reasons for this paucity of evidence is the lack of exploration and publication on the reliability and validity of trunk FM protocols. The purpose of this study was to determine the within- and between-day test-retest reliability and construct validity for trunk extensor muscle FM. Twenty-nine healthy participants were tested under three FM conditions with different modulation rates. Testing was performed on a custom-built apparatus designed for trunk isometric force testing. FM accuracy relative to a fluctuating target force (20-50%MVF) was quantified using the root mean square error of the participant's generated force relative to the target force. Reliability and precision of measurement were assessed using the Intraclass Correlation Coefficient (ICC), standard error of measurement (SEM), minimal detectable difference (MDD95), and Bland-Altman plots. In a subset of participants, we collected surface electromyography of trunk and hip muscles. We used non-negative matrix factorization (NNMF) to identify the underlying motor control strategies. Within- and between-day test-retest reliability was excellent for FM accuracy across the three conditions (ICC range: 0.865 to 0.979). SEM values ranged 0.9-1.8 Newtons(N) and MDD95 ranged from 2.4-4.9N. Conditions with faster rates of FM had higher ICCs. NNMF analysis revealed two muscle synergies that were consistent across participants and conditions. These synergies demonstrate that the muscles primarily involved in this FM task were indeed the trunk extensor muscles. This protocol can consistently measure FM accuracy within and between testing sessions. Trunk extensor FM, as measured by this protocol, is not specific to any trunk muscle group but is the result of modulation by all the trunk extensor muscles.
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.