The Global Navigation Satellite System is vulnerable to interference signals that can potentially disable the system, because the signal strength tends to be very weak. Interference such as jamming, which disables the receiver via excessively high signal strength in the satellite navigation frequency band, and spoofing, which induces the receiver to output erroneous position and time data via signals similar to actual navigation signals, disrupt satellite navigation systems. As the threat of interference is increasing, considerable research effort has been expended in an attempt to deal with it in various ways. Spoofing attacks are especially difficult to detect. This paper deals with a technique to detect a spoofing signal and to mitigate attacks on satellite navigation systems. The satellite navigation signal is influenced by the navigation satellite itself and errors due to environmental factors, and spoofing signal detection should be well reflected in the navigation signal. Especially, in the case of mobile receivers, it is not easy to detect a spoofing signal because the exact position of the receiver cannot be known. To detect a spoofing signal, additional hardware may be required; in some cases, heterogeneous sensors, such as inertial sensors, may be used. The technique introduced in this paper effectively discriminates spoofing signals based only on receiver measurements, without the need for additional devices. It generates test statistics based on the pseudorange, which is the measured value of the receiver position, and detects spoofing signals by setting the monitoring interval according to a "sliding window". Because the proposed method uses output data and measurements obtained from the receiver, it can be applied to general receivers at low cost.