4 results on '"S. Bertoncini"'
Search Results
2. Comparative Y-chromosome analysis among Cypriots in the context of historical events and migrations.
- Author
-
Moutsouri I, Keravnou A, Manoli P, Bertoncini S, Michailidou K, Christofi V, Xenophontos S, Cariolou MA, and Bashiardes E
- Subjects
- Cyprus, Genetics, Population, Geography, Haplotypes genetics, Humans, Microsatellite Repeats genetics, Polymorphism, Single Nucleotide genetics, Time Factors, Chromosomes, Human, Y genetics, Human Migration
- Abstract
Y-chromosome analysis provides valuable information regarding the migration patterns of male ancestors, ranging from the Paleolithic age to the modern humans. STR and SNP genotyping analysis provides data regarding the genetic and geographical ancestry of the populations studied. This study focused on the analysis of the Y-chromosome in Maronite Cypriots and Armenian Cypriots, who came to the island as a result of different historical events. The aim was to provide information on the paternal genetic ancestry of Maronites and Armenians of Cyprus and investigate any affinity with the Greek Cypriots and Turkish Cypriots of the island. Since there is limited information in the current literature, we proceeded and used 23 Y-chromosome STRs and 28 Y-chromosome SNPs to genotype 57 Maronite Cypriots and 56 Armenian Cypriots, which were then compared to data from 344 Greek Cypriots and 380 Turkish Cypriots. All samples were assigned to eight major Y-haplogroups but the most frequent haplogroup among all Cypriots is haplogroup J in the major subclade J2a-L559. The calculated pairwise genetic distances between the populations show that Armenian Cypriots are genetically closer to Greek and Turkish Cypriots compared to Maronite Cypriots. Median Joining Network analysis in 17 Y-STR haplotypes of all Cypriots assigned to J2a-L559, revealed that Cypriots share a common paternal ancestor, prior to the migration of the Armenians and Maronites to Cyprus, estimated in the Late Bronze Age and Early Iron Age., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2021
- Full Text
- View/download PDF
3. Y-chromosomal analysis of Greek Cypriots reveals a primarily common pre-Ottoman paternal ancestry with Turkish Cypriots.
- Author
-
Heraclides A, Bashiardes E, Fernández-Domínguez E, Bertoncini S, Chimonas M, Christofi V, King J, Budowle B, Manoli P, and Cariolou MA
- Subjects
- Cyprus ethnology, Humans, Male, Chromosomes, Human, Y genetics, Haplotypes, White People ethnology, White People genetics
- Abstract
Genetics can provide invaluable information on the ancestry of the current inhabitants of Cyprus. A Y-chromosome analysis was performed to (i) determine paternal ancestry among the Greek Cypriot (GCy) community in the context of the Central and Eastern Mediterranean and the Near East; and (ii) identify genetic similarities and differences between Greek Cypriots (GCy) and Turkish Cypriots (TCy). Our haplotype-based analysis has revealed that GCy and TCy patrilineages derive primarily from a single gene pool and show very close genetic affinity (low genetic differentiation) to Calabrian Italian and Lebanese patrilineages. In terms of more recent (past millennium) ancestry, as indicated by Y-haplotype sharing, GCy and TCy share much more haplotypes between them than with any surrounding population (7-8% of total haplotypes shared), while TCy also share around 3% of haplotypes with mainland Turks, and to a lesser extent with North Africans. In terms of Y-haplogroup frequencies, again GCy and TCy show very similar distributions, with the predominant haplogroups in both being J2a-M410, E-M78, and G2-P287. Overall, GCy also have a similar Y-haplogroup distribution to non-Turkic Anatolian and Southwest Caucasian populations, as well as Cretan Greeks. TCy show a slight shift towards Turkish populations, due to the presence of Eastern Eurasian (some of which of possible Ottoman origin) Y-haplogroups. Overall, the Y-chromosome analysis performed, using both Y-STR haplotype and binary Y-haplogroup data puts Cypriot in the middle of a genetic continuum stretching from the Levant to Southeast Europe and reveals that despite some differences in haplotype sharing and haplogroup structure, Greek Cypriots and Turkish Cypriots share primarily a common pre-Ottoman paternal ancestry.
- Published
- 2017
- Full Text
- View/download PDF
4. Dynamic Effects of Topoisomerase I Inhibition on R-Loops and Short Transcripts at Active Promoters.
- Author
-
Marinello J, Bertoncini S, Aloisi I, Cristini A, Malagoli Tagliazucchi G, Forcato M, Sordet O, and Capranico G
- Subjects
- DNA Topoisomerases, Type I genetics, HCT116 Cells, Humans, Real-Time Polymerase Chain Reaction, Transcription, Genetic, Camptothecin pharmacology, DNA Replication, DNA Topoisomerases, Type I chemistry, Promoter Regions, Genetic genetics, Topoisomerase I Inhibitors pharmacology
- Abstract
Topoisomerase I-DNA-cleavage complexes (Top1cc) stabilized by camptothecin (CPT) have specific effects at transcriptional levels. We recently reported that Top1cc increase antisense transcript (aRNAs) levels at divergent CpG-island promoters and, transiently, DNA/RNA hybrids (R-loop) in nuclear and mitochondrial genomes of colon cancer HCT116 cells. However, the relationship between R-loops and aRNAs was not established. Here, we show that aRNAs can form R-loops in N-TERA-2 cells under physiological conditions, and that promoter-associated R-loops are somewhat increased and extended in length immediately upon cell exposure to CPT. In contrast, persistent Top1ccs reduce the majority of R-loops suggesting that CPT-accumulated aRNAs are not commonly involved in R-loops. The enhancement of aRNAs by Top1ccs is present both in human colon cancer HCT116 cells and WI38 fibroblasts suggesting a common response of cancer and normal cells. Although Top1ccs lead to DSB and DDR kinases activation, we do not detect a dependence of aRNA accumulation on ATM or DNA-PK activation. However, we showed that the cell response to persistent Top1ccs can involve an impairment of aRNA turnover rather than a higher synthesis rate. Finally, a genome-wide analysis shows that persistent Top1ccs also determine an accumulation of sense transcripts at 5'-end gene regions suggesting an increased occurrence of truncated transcripts. Taken together, the results indicate that Top1 may regulate transcription initiation by modulating RNA polymerase-generated negative supercoils, which can in turn favor R-loop formation at promoters, and that transcript accumulation at TSS is a response to persistent transcriptional stress by Top1 poisoning.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.