1. The cyst-dividing bacterium Ramlibacter tataouinensis TTB310 genome reveals a well-stocked toolbox for adaptation to a desert environment.
- Author
-
De Luca G, Barakat M, Ortet P, Fochesato S, Jourlin-Castelli C, Ansaldi M, Py B, Fichant G, Coutinho PM, Voulhoux R, Bastien O, Maréchal E, Henrissat B, Quentin Y, Noirot P, Filloux A, Méjean V, DuBow MS, Barras F, Barbe V, Weissenbach J, Mihalcescu I, Verméglio A, Achouak W, and Heulin T
- Subjects
- Adaptation, Physiological radiation effects, Carbohydrate Metabolism genetics, Carbohydrate Metabolism radiation effects, Cell Division radiation effects, Cell Membrane metabolism, Cell Membrane radiation effects, Cell Movement genetics, Cell Movement radiation effects, Cell Shape genetics, Cell Shape radiation effects, Circadian Rhythm genetics, Circadian Rhythm radiation effects, Comamonadaceae enzymology, Comamonadaceae genetics, DNA Repair genetics, DNA Repair radiation effects, DNA, Bacterial genetics, Extracellular Space genetics, Extracellular Space metabolism, Extracellular Space radiation effects, Fatty Acids metabolism, Hydrolysis radiation effects, Light, Membrane Fluidity genetics, Membrane Fluidity radiation effects, Membrane Lipids metabolism, Osmotic Pressure radiation effects, Oxidative Stress genetics, Oxidative Stress radiation effects, Polysaccharides, Bacterial biosynthesis, Polysaccharides, Bacterial metabolism, Protein Transport genetics, Protein Transport radiation effects, Sequence Analysis, DNA, Signal Transduction genetics, Signal Transduction radiation effects, Trehalose biosynthesis, Trehalose metabolism, Adaptation, Physiological genetics, Cell Division genetics, Comamonadaceae cytology, Comamonadaceae physiology, Desert Climate, Genome, Bacterial, Genomics
- Abstract
Ramlibacter tataouinensis TTB310(T) (strain TTB310), a betaproteobacterium isolated from a semi-arid region of South Tunisia (Tataouine), is characterized by the presence of both spherical and rod-shaped cells in pure culture. Cell division of strain TTB310 occurs by the binary fission of spherical "cyst-like" cells ("cyst-cyst" division). The rod-shaped cells formed at the periphery of a colony (consisting mainly of cysts) are highly motile and colonize a new environment, where they form a new colony by reversion to cyst-like cells. This unique cell cycle of strain TTB310, with desiccation tolerant cyst-like cells capable of division and desiccation sensitive motile rods capable of dissemination, appears to be a novel adaptation for life in a hot and dry desert environment. In order to gain insights into strain TTB310's underlying genetic repertoire and possible mechanisms responsible for its unusual lifestyle, the genome of strain TTB310 was completely sequenced and subsequently annotated. The complete genome consists of a single circular chromosome of 4,070,194 bp with an average G+C content of 70.0%, the highest among the Betaproteobacteria sequenced to date, with total of 3,899 predicted coding sequences covering 92% of the genome. We found that strain TTB310 has developed a highly complex network of two-component systems, which may utilize responses to light and perhaps a rudimentary circadian hourglass to anticipate water availability at the dew time in the middle/end of the desert winter nights and thus direct the growth window to cyclic water availability times. Other interesting features of the strain TTB310 genome that appear to be important for desiccation tolerance, including intermediary metabolism compounds such as trehalose or polyhydroxyalkanoate, and signal transduction pathways, are presented and discussed.
- Published
- 2011
- Full Text
- View/download PDF