1. Human Cryptochrome-1 Confers Light Independent Biological Activity in Transgenic Drosophila Correlated with Flavin Radical Stability
- Author
-
Michiyo Sakuma, Nigel S. Scrutton, Alex R. Jones, Derren J. Heyes, Nathalie Hoang, François Rouyer, Antoine Danon, David Robles, Shirley Tait, André Klarsfeld, Guillaume Soubigou, Jacqueline Vieira, Margaret Ahmad, Taishi Yoshii, Charlotte Helfrich-Förster, Marie Picot, Jean Yves Coppée, Université Pierre et Marie Curie - Paris 6 (UPMC), Manchester Interdisciplinary Biocentre and Faculty of Life Sciences, University of Manchester [Manchester], Neurobiologie et Développement (N&eD), Centre National de la Recherche Scientifique (CNRS), Institut de Neurobiologie Alfred Fessard (INAF), Graduate School of Natural Science and Technology, Okayama University, Biocentre, Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg (JMU), Transcriptome et Epigénome (PF2), Institut Pasteur [Paris] (IP), Pennsylvania State University (Penn State), Penn State System, The Sainsbury Laboratory [Norwich] (TSL), Manchester Institute of Biotechnology, Physiopathologie des Maladies du Système Nerveux Central, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Adaptation Biologique et Vieillissement = Biological Adaptation and Ageing (B2A), Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Paris Seine (IBPS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Julius-Maximilians-Universität Würzburg [Wurtzbourg, Allemagne] (JMU), Institut Pasteur [Paris], PERIGNON, Alain, and University of Würzburg = Universität Würzburg
- Subjects
Anatomy and Physiology ,[SDV]Life Sciences [q-bio] ,Circadian clock ,lcsh:Medicine ,Biochemistry ,Animals, Genetically Modified ,0302 clinical medicine ,Cryptochrome ,Molecular Cell Biology ,lcsh:Science ,Genetics ,0303 health sciences ,Multidisciplinary ,Reverse Transcriptase Polymerase Chain Reaction ,Mechanisms of Signal Transduction ,Metamorphosis, Biological ,Biological activity ,Animal Models ,Darkness ,Circadian Rhythm ,Cell biology ,Medicine ,[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,Drosophila ,Signal transduction ,Drosophila melanogaster ,Research Article ,Signal Transduction ,Cryptochrome-1 ,Flavoprotein ,Flavin group ,Biology ,03 medical and health sciences ,Model Organisms ,ddc:570 ,Flavins ,Animals ,Humans ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,[SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,DNA Primers ,030304 developmental biology ,Gene Expression Profiling ,lcsh:R ,Proteins ,Microarray Analysis ,biology.organism_classification ,Cryptochromes ,biology.protein ,lcsh:Q ,Physiological Processes ,030217 neurology & neurosurgery - Abstract
International audience; Cryptochromes are conserved flavoprotein receptors found throughout the biological kingdom with diversified roles in plant development and entrainment of the circadian clock in animals. Light perception is proposed to occur through flavin radical formation that correlates with biological activity in vivo in both plants and Drosophila. By contrast, mammalian (Type II) cryptochromes regulate the circadian clock independently of light, raising the fundamental question of whether mammalian cryptochromes have evolved entirely distinct signaling mechanisms. Here we show by developmental and transcriptome analysis that Homo sapiens cryptochrome - 1 (HsCRY1) confers biological activity in transgenic expressing Drosophila in darkness, that can in some cases be further stimulated by light. In contrast to all other cryptochromes, purified recombinant HsCRY1 protein was stably isolated in the anionic radical flavin state, containing only a small proportion of oxidized flavin which could be reduced by illumination. We conclude that animal Type I and Type II cryptochromes may both have signaling mechanisms involving formation of a flavin radical signaling state, and that light independent activity of Type II cryptochromes is a consequence of dark accumulation of this redox form in vivo rather than of a fundamental difference in signaling mechanism.
- Published
- 2012
- Full Text
- View/download PDF