1. Genome-wide analysis of sulfotransferase genes and their responses to abiotic stresses in Chinese cabbage (Brassica rapa L.).
- Author
-
Lu Jin, Ning Ouyang, Yong Huang, Chunlin Liu, and Ying Ruan
- Subjects
Medicine ,Science - Abstract
Sulfotransferases (SOTs; EC 2.8.2.-), which are widespread from prokaryotes to eukaryotes, constitute a multi-protein family that plays crucial roles in plant growth, development and stress adaptation. However, this family has not been systemically investigated in Brassica rapa. Here, a genome-wide systemic analysis of SOT genes in B. rapa subsp. pekinensis, a globally cultivated vegetable, were conducted. We identified 56 SOT genes from the whole B. rapa genome using Arabidopsis SOT sequences as queries and classified them into nine groups, rather than the eight groups of previous research. 56 B. rapa SOT genes (BraSOTs) were distributed on all 10 chromosomes except for chromosome 5. Of these, 27 BraSOTs were distributed in seven clusters on five chromosomes (ChrA01, ChrA02, Chr03, ChrA07, and Chr09). Among the BraSOT proteins, 48 had only one SOT_1 domain and 6 had two, while 2 had one SOT_3 domain. Additionally, 47 BraSOT proteins contained only known SOT domains. The remaining nine proteins, five in group-VIII and two in group-IX, contained additional transmembrane domains. Specific motif regions I and IV for 3'-phosphoadenosine 5'-phosphosulfate binding were found in 41 BraSOT proteins. Introns were present in only 18 BraSOT genes, and all seven BraSOT genes in groups VIII and IX had more than three introns. To identify crucial SOTs mediating the response to abiotic stress in B. rapa, expression changes in 56 BraSOT genes were determined by quantitative RT-PCR after drought, salinity, and ABA treatments, and some BraSOT genes were associated with NaCl, drought and ABA stress, e.g. Bra017370, Bra009300, Bra027880.
- Published
- 2019
- Full Text
- View/download PDF