1. Versatile and flexible microfluidic qPCR test for high-throughput SARS-CoV-2 and cellular response detection in nasopharyngeal swab samples
- Author
-
Martin Rottman, Patrick Touron, Georges Vassaux, Latifa Noussair, Vianney Leclercq, Sylvain Hubac, Aurelien Degoutte, Laure-Emmanuelle Zaragosi, Sylvie Leroy, Charles-Hugo Marquette, Jean-Louis Herrmann, Julien Fassy, Antoinette Lemoine, Caroline Lacoux, Pascal Barbry, Jean-Louis Nahon, Bernard Mari, David Rouquié, Institut de pharmacologie moléculaire et cellulaire (IPMC), Centre National de la Recherche Scientifique (CNRS)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA), FHU OncoAge - Pathologies liées à l’âge [CHU Nice] (OncoAge), Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Pharmacologie Moléculaire et Cellulaire [UNIV Côte d'Azur] (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Service de Microbiologie [Garches], Hôpital Raymond Poincaré [AP-HP], Institut de Recherche Criminelle de la Gendarmerie Nationale (Ministère de l'intérieur) (IRCGN), Infection et inflammation (2I), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut National de la Santé et de la Recherche Médicale (INSERM), 'Centre National de la Recherche Scientifique' (CNRS), 'Université Côte d’Azur', French 'French Defence Innovation Agency – Agence de l’Innovation de Défense ('project 'Safe and direct COV-2 qPCR Test') Département des Alpes Maritimes (COVID-19 Health program). Cancéropole PACA and CL is supported by Plan Cancer 2018 « ARN non-codants en cancérologie: du fondamental au translationnel » (number 18CN045).The Biomark equipment was funded by Canceropole PACA and France Génomique (Commissariat aux Grands Investissements: ANR-10-INBS-6 09–03, ANR-10-INBS-09–02)., and ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
- Subjects
0301 basic medicine ,Male ,RNA viruses ,Viral Diseases ,Computer science ,Coronaviruses ,Surfactants ,Artificial Gene Amplification and Extension ,Biochemistry ,Polymerase Chain Reaction ,law.invention ,COVID-19 Testing ,Medical Conditions ,law ,[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,Throughput (business) ,Materials ,Polymerase chain reaction ,Pathology and laboratory medicine ,Virus Testing ,0303 health sciences ,Multidisciplinary ,Diagnostic test ,Microfluidic Analytical Techniques ,Medical microbiology ,Large sample ,Nucleic acids ,Infectious Diseases ,Ribonucleoproteins ,Viruses ,Physical Sciences ,Medicine ,RNA, Viral ,[SDV.IB]Life Sciences [q-bio]/Bioengineering ,Female ,RNA extraction ,SARS CoV 2 ,Pathogens ,Research Article ,Adult ,2019-20 coronavirus outbreak ,Coronavirus disease 2019 (COVID-19) ,SARS coronavirus ,Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ,Science ,030106 microbiology ,Microfluidics ,Materials Science ,Detergents ,Computational biology ,Real-Time Polymerase Chain Reaction ,Sensitivity and Specificity ,Microbiology ,Specimen Handling ,03 medical and health sciences ,Extraction techniques ,Diagnostic Medicine ,Genetics ,Humans ,Non-coding RNA ,Molecular Biology Techniques ,Molecular Biology ,030304 developmental biology ,DNA Primers ,Medicine and health sciences ,Natural antisense transcripts ,Biology and life sciences ,030306 microbiology ,Diagnostic Tests, Routine ,SARS-CoV-2 ,Organisms ,Viral pathogens ,COVID-19 ,Proteins ,Covid 19 ,DNA extraction ,Microbial pathogens ,Gene regulation ,Research and analysis methods ,MicroRNAs ,030104 developmental biology ,RNA ,Gene expression - Abstract
The emergence and quick spread of SARS-CoV-2 has pointed at a low capacity response for testing large populations in many countries, in line of material, technical and staff limitations. The traditional RT-qPCR diagnostic test remains the reference method and is by far the most widely used test. These assays are limited to a few probe sets, require large sample PCR reaction volumes, along with an expensive and time-consuming RNA extraction step. Here we describe a quantitative nanofluidic assay that overcomes some of these shortcomings, based on the BiomarkTM instrument from Fluidigm. This system offers the possibility of performing 4608 qPCR end-points in a single run, equivalent to 192 clinical samples combined with 12 pairs of primers/probe sets in duplicate, thus allowing the monitoring of SARS-CoV-2 including the detection of specific SARS-CoV-2 variants, as well as the detection other pathogens and/or host cellular responses (virus receptors, response markers, microRNAs). The 10 nL-range volume of BiomarkTM reactions is compatible with sensitive and reproducible reactions that can be easily and cost-effectively adapted to various RT-qPCR configurations and sets of primers/probe. Finally, we also evaluated the use of inactivating lysis buffers composed of various detergents in the presence or absence of proteinase K to assess the compatibility of these buffers with a direct reverse transcription enzymatic step and we propose several protocols, bypassing the need for RNA purification. We advocate that the combined utilization of an optimized processing buffer and a high-throughput real-time PCR device would contribute to improve the turn-around-time to deliver the test results to patients and increase the SARS-CoV-2 testing capacities.
- Published
- 2020
- Full Text
- View/download PDF