1. In-silico study of accuracy and precision of left-ventricular strain quantification from 3D tagged MRI
- Author
-
Ezgi Berberoglu, Christian T. Stoeck, Philippe Moireau, Sebastian Kozerke, Martin Genet, Institute for Biomedical Engineering [ETH Zürich] (IBT), Universität Zürich [Zürich] = University of Zurich (UZH)-Department of Information Technology and Electrical Engineering [Zürich] (D-ITET), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)- Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Mathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine (M3DISIM), Laboratoire de mécanique des solides (LMS), École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), French National Research Agency Research Grant Nr. ANR-10-EQPX-37 received by Martin Genet. • Swiss National Science Foundation(SNF) Research Grants Nr. CR23I3_166485 received by Sebastian Kozerke. Ezgi Berberoğlu’s salary was paid by this grant. • Swiss NationalScience Foundation (SNF) Research Grants Nr. PZ00P2_174144 received by Christian T. Stoeck., École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris
- Subjects
[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,Physics::Medical Physics ,030204 cardiovascular system & hematology ,Signal-To-Noise Ratio ,Ventricular Function, Left ,030218 nuclear medicine & medical imaging ,Diagnostic Radiology ,0302 clinical medicine ,Medicine and Health Sciences ,Biomechanics ,Image resolution ,Physics ,Ground truth ,Multidisciplinary ,medicine.diagnostic_test ,Radiology and Imaging ,Classical Mechanics ,[SPI.MECA.BIOM]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Biomechanics [physics.med-ph] ,Condensed Matter Physics ,Magnetic Resonance Imaging ,Deformation ,Biomechanical Phenomena ,In Vivo Imaging ,Physical Sciences ,Engineering and Technology ,Medicine ,Radial stress ,Research Article ,Accuracy and precision ,Imaging Techniques ,Heart Ventricles ,Science ,Materials Science ,Material Properties ,Image processing ,Image Analysis ,Research and Analysis Methods ,03 medical and health sciences ,Imaging, Three-Dimensional ,[SDV.MHEP.CSC]Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular system ,Cardiac magnetic resonance imaging ,Diagnostic Medicine ,Image Interpretation, Computer-Assisted ,medicine ,Humans ,Computer Simulation ,Image warping ,Signal to Noise Ratio ,Damage Mechanics ,Reproducibility of Results ,Biology and Life Sciences ,Magnetic resonance imaging ,Signal Processing ,Anisotropy ,Biomedical engineering - Abstract
Cardiac Magnetic Resonance Imaging (MRI) allows quantifying myocardial tissue deformation and strain based on the tagging principle. In this work, we investigate accuracy and precision of strain quantification from synthetic 3D tagged MRI using equilibrated warping. To this end, synthetic biomechanical left-ventricular tagged MRI data with varying tag distance, spatial resolution and signal-to-noise ratio (SNR) were generated and processed to quantify errors in radial, circumferential and longitudinal strains relative to ground truth. Results reveal that radial strain is more sensitive to image resolution and noise than the other strain components. The study also shows robustness of quantifying circumferential and longitudinal strain in the presence of geometrical inconsistencies of 3D tagged data. In conclusion, our study points to the need for higher-resolution 3D tagged MRI than currently available in practice in order to achieve sufficient accuracy of radial strain quantification., PLoS ONE, 16 (11), ISSN:1932-6203
- Published
- 2021
- Full Text
- View/download PDF