1. A Statistical Model for Estimating Maternal-Zygotic Interactions and Parent-of-Origin Effects of QTLs for Seed Development
- Author
-
Youchun Li, Jiasheng Wu, Rongling Wu, Brenda G. Hunter, Yanchun Li, Tian Liu, Song Wu, Brian A. Larkins, Yanru Zeng, Cintia M. Coelho, and Ricardo A. Dante
- Subjects
Genotype ,Quantitative Trait Loci ,lcsh:Medicine ,Genetics and Genomics/Complex Traits ,Quantitative trait locus ,Biology ,Genes, Plant ,Genome ,Genetics and Genomics/Plant Genetics and Gene Expression ,Chromosomes, Plant ,Endosperm ,Genomic Imprinting ,Imprinting (psychology) ,Allele ,lcsh:Science ,Alleles ,Crosses, Genetic ,Plant Physiological Phenomena ,Genetics ,Models, Statistical ,Ploidies ,Multidisciplinary ,Models, Genetic ,lcsh:R ,Chromosome Mapping ,food and beverages ,Embryo ,Seeds ,lcsh:Q ,Mathematics/Statistics ,Ploidy ,Genomic imprinting ,Algorithms ,Research Article - Abstract
Proper development of a seed requires coordinated exchanges of signals among the three components that develop side by side in the seed. One of these is the maternal integument that encloses the other two zygotic components, i.e., the diploid embryo and its nurturing annex, the triploid endosperm. Although the formation of the embryo and endosperm contains the contributions of both maternal and paternal parents, maternally and paternally derived alleles may be expressed differently, leading to a so-called parent-of-origin or imprinting effect. Currently, the nature of how genes from the maternal and zygotic genomes interact to affect seed development remains largely unknown. Here, we present a novel statistical model for estimating the main and interaction effects of quantitative trait loci (QTLs) that are derived from different genomes and further testing the imprinting effects of these QTLs on seed development. The experimental design used is based on reciprocal backcrosses toward both parents, so that the inheritance of parent-specific alleles could be traced. The computing model and algorithm were implemented with the maximum likelihood approach. The new strategy presented was applied to study the mode of inheritance for QTLs that control endoreduplication traits in maize endosperm. Monte Carlo simulation studies were performed to investigate the statistical properties of the new model with the data simulated under different imprinting degrees. The false positive rate of imprinting QTL discovery by the model was examined by analyzing the simulated data that contain no imprinting QTL. The reciprocal design and a series of analytical and testing strategies proposed provide a standard procedure for genomic mapping of QTLs involved in the genetic control of complex seed development traits in flowering plants.
- Published
- 2008
- Full Text
- View/download PDF