Ayako Isotani, Kyoko Fujita, Yukiko Ogawa, Morimasa Wada, Masaru Okabe, Hiromitsu Tanaka, Shigeru Oshio, Keizo Tokuhiro, Sadaki Yokota, Mika Hirose, Yoshihisa Yano, and Yoshitake Nishimune
Polyamines are known to play important roles in the proliferation and differentiation of many types of cells. Although considerable amounts of polyamines are synthesized and stored in the testes, their roles remain unknown. Ornithine decarboxylase antizymes (OAZs) control the intracellular concentration of polyamines in a feedback manner. OAZ1 and OAZ2 are expressed ubiquitously, whereas OAZ-t/OAZ3 is expressed specifically in germline cells during spermiogenesis. OAZ-t reportedly binds to ornithine decarboxylase (ODC) and inactivates ODC activity. In a prior study, polyamines were capable of inducing a frameshift at the frameshift sequence of OAZ-t mRNA, resulting in the translation of OAZ-t. To investigate the physiological role of OAZ-t, we generated OAZ-t–disrupted mutant mice. Homozygous OAZ-t mutant males were infertile, although the polyamine concentrations of epididymides and testes were normal in these mice, and females were fertile. Sperm were successfully recovered from the epididymides of the mutant mice, but the heads and tails of the sperm cells were easily separated in culture medium during incubation. Results indicated that OAZ-t is essential for the formation of a rigid junction between the head and tail during spermatogenesis. The detached tails and heads were alive, and most of the headless tails showed straight forward movement. Although the tailless sperm failed to acrosome-react, the heads were capable of fertilizing eggs via intracytoplasmic sperm injection. OAZ-t likely plays a key role in haploid germ cell differentiation via the local concentration of polyamines., Author Summary Polyamines are essential for cell proliferation and differentiation, but their role in these processes is unknown. Ornithine decarboxylase antizymes (OAZs) are enzymes that control the concentration of polyamines in cells. To elucidate the role of one of these enzymes, OAZ-t, in the regulation of polyamine concentration during sperm formation, we generated mutant mice in which the OAZ-t gene was disrupted. When we observed sperm from the mice lacking a functional Oaz-t gene, we found that the sperm heads separated easily from the tails, indicating that OAZ-t is essential for the formation of a rigid junction between the head and tail during sperm development. Many of the headless tails could continue swimming, but they were unable to participate in the signaling processes required for successful fertilization. However, tailless heads could produce healthy pups when injected into unfertilized eggs. Such a phenotype has not been previously found. The mutant mice evoked rare cases of infertile human patients whose sperm behaves in a proper fashion. Our study underscores the importance of research into the processes of spermatogenesis and fertilization.