5 results on '"Xiahong He"'
Search Results
2. First Report of Meloidogyne hapla Infecting Yunmuxiang (Aucklandia lappa) in China
- Author
-
Xiahong He, Y. Dong, Shaofang Zhou, Yang Wang, Hong Li, Wentao Wu, Zewen Gao, and Zhu-hua Wang
- Subjects
Horticulture ,Nematode ,Perennial plant ,biology ,Seedling ,Plant Science ,Root system ,Herbaceous plant ,biology.organism_classification ,Agronomy and Crop Science ,Population density ,Stylet ,Bulb - Abstract
Yunmuxiang (Aucklandia lappa) is a tall, perennial herbaceous plant in the compositae family, occurring mainly in Asia and Europe. Yunmuxiang originated in India and was introduced into China in approximately 1940. Since then it has been widely cultivated in the southwest region of China for medicinal uses; it is included in the Chinese Pharmacopoeia. Yunmuxiang is used primarily as a sedative, including for anesthesia (Ting et al. 2012). Severely stunted and withered Yunmuxiang plants with rotted and galled roots were observed in a field in near the city of Lijiang (N 99°46'; E 27°18') in October 2019. These symptoms were typical of infection by root-knot nematodes.The second-stage juveniles (J2) were collected from the soil in the root zone, and adult females were dissected from roots. Population densities of J2 ranged from 325 to 645 per 100 cm3. Morphological analysis and species-specific PCR were performed on the second stage (J2) and females. Morphological characteristics are as follows: for J2 (n=20) , body length = 360.5 ± 23.4 µm, tail length = 47.2 ± 6.1 µm, and stylet length = 10.4 ± 1.9 µm, distance from dorsal esophageal gland opening to the stylet knot (DGO) = 3.96 ± 0.42 μm; females (n = 20) were pear-shaped, body length = 565.23 ± 86.68 μm, maximum body width = 407.24 ± 60.21 μm, stylet length = 9.93 ± 0.88 μm, DGO = 4.76 ± 0.32 μm, stylet median bulb width (MBW) = 29.67 ± 3.61 μm, perineum morphology is low and low dorsal arch round, with a typical inferior protrusion near the anus. These morphological characteristics are consistent with Meloidogyne hapla as described by Hunt and Handoo (2009). To confirm species identification, DNA was extracted from females (Blok, et al. 1997) and ITS region was amplified using the primers 18S/26S (Vrain et al. 1992). Furthermore, species-specific SCAR primers JMV1/JMV hapla were used as described by Adam et al. (2007). PCR produced 768 bp and 419 bp sequences. Fragments were sequenced (MW512922and MW228371, respectively) and compared with available sequences on NCBI. Sequences were 99.48% identical to the MT249016, KJ572385, and 100% identical to the GQ395574, GQ395569 M. hapla sequences, respectively. Morphological and molecular characterization supports the identification of the isolate found on Aucklandia lappa as M. hapla. Yunmuxiang seed were planted in 20 cm diameter, 10 cm deep plastic pots containing 1000 cm3 sterilized soil. Seedlings were thinned to one per pot. At the 2-3 leaf stage 10 pots were infested with 1500 M. hapla J2 per seedling, using a sterilized micropipette. Plants were maintained at 20-25°C in a greenhouse. Control plants received sterile water, and the pathogenicity test was repeated three times. After 30 days, plants were removed from pots and soil gently removed from the roots. A large number of galls (95.6 ± 2.5) and egg masses (33.5 ± 0.5) were found on each root system. Yunmuxiang was considered a good host for M. hapla in Lijiang. M. hapla is a major plant parasitic nematode with a wide geographic distribution and range of host plants and causes severe yield losses (Azevedo de Oliveira et al. 2018). Through investigation, this is the first report worldwide of M. hapla infecting Aucklandia lappa.
- Published
- 2021
3. First Report of Fruit Rot in Opium Poppy (Papaver somniferum) Caused by Alternaria alternata in China
- Author
-
Z. R. Gao, R. Q. Duan, Liwei Guo, Z. T. Wu, S. H. He, Y. J. Wei, K. Z. Yang, and Xiahong He
- Subjects
Horticulture ,Pathogen detection ,biology ,Papaver ,Ornamental plant ,Plant Science ,Opium Poppy ,Fruit rot ,biology.organism_classification ,Agronomy and Crop Science ,Alternaria alternata - Published
- 2020
4. First Report of Sanqi (Panax notoginseng) Dieback Caused by Haematonectria ipomoeae in China
- Author
-
Z. S. Mao, Y. J. Long, Youyong Zhu, Z. J. Chen, and Xiahong He
- Subjects
Intergenic region ,Genetic marker ,Haematonectria ipomoeae ,Botany ,Panax notoginseng ,Plant Science ,Fungal morphology ,Biology ,Pathogenicity ,biology.organism_classification ,Medicinal plants ,Agronomy and Crop Science ,Gene - Published
- 2015
5. First Report of Cylindrocarpon destructans var. destructans Causing Black Root Rot of Sanqi (Panax notoginseng) in China
- Author
-
Shusheng Zhu, Y. J. Long, Z. S. Mao, Xiahong He, Youyong Zhu, and Z. J. Chen
- Subjects
biology ,Inoculation ,fungi ,Phialide ,food and beverages ,Plant Science ,biology.organism_classification ,Bulb ,Conidium ,Chlamydospore ,Botany ,Root rot ,Panax notoginseng ,Agronomy and Crop Science ,Mycelium - Abstract
Sanqi (Panax notoginseng (Burk.) F. H. Chen) is planted on >10,000 ha in China and is a popular Chinese medicinal material (2). Black root rot is a recently identified but worsening problem on Sanqi since 2010 in Wenshan, China. Of the plant tubers examined from 185 ha, 8.5 to 27.4% were black with necrotic lesions. The base of leaves of infected plants had brown, sunken, necrotic lesions, and symptomatic plants had one to three chlorotic leaves. A fungus was isolated consistently from the basal leaves, bulb, and tubers of symptomatic plants. Six single-spore isolates were cultured on potato sucrose agar (PSA) at 25 ± 1°C in the dark. The mycelium of each culture was white initially on PSA, and then became rust-colored. The adaxial surfaces of the plates were black. Conidiophores were 13.6 to 167.3 × 1.4 to 21.8 μm (avg. 68.6 × 2.9 μm), single or with up to four levels of branching and two to three branches (or phialides) per level. The basal branches were often divergent, whereas the terminal branches were usually more appressed. Sporodochia were not present. Microconidia were 0-septate, 4.1 to 9.5 × 2.7 to 4.1 μm (avg. 8.2 × 2.9 μm). Conidia were 1- to 3-septate and occasionally 4-septate. One- to 3-septate conidia were clavate, with a truncate or slightly protruding conidial base, 9.2 to 40.8 × 3.5 to 6.8 μm (avg. 26.7 × 5.2 μm); whereas 4-septate conidia were 32.6 to 50.3 × 5.4 to 6.8 μm (avg. 40.9 × 6.5 μm). Chlamydospores were abundant, golden to brown, single or in chains or clumps, and up to 21.8 μm in diameter. PCR amplification was carried out for one isolate, RR926, using rDNA internal transcribed spacer (ITS) primer pairs ITS1F and ITS4 (4). Sequencing of the PCR product (GenBank Accession No. KC904953) revealed 99% similarity (99% coverage) with the ITS sequence of Cylindrocarpon destructans var. destructans (AM419065). Phylogenetic analysis (MEGA 4.1) using the neighbor-joining algorithm placed the isolate in a well-supported cluster (>90% bootstrap value based on 1,000 replicates) with AM419065. Therefore, the pathogen was identified as C. destructans (Zinssm.) Scholten var. destructans (teleomorph Ilyonectria radicicola (Gerlach & L. Nilsson) P. Chaverri & C. Salgado) based on morphological characteristics and rDNA-ITS sequence analysis (1,3). Pathogenicity tests of the six isolates were conducted on five 1-year-old and five 3-year-old plants/isolate. The roots of all plants were washed with sterilized water, and then surface-sterilized with 75% ethanol. Inoculum (1 ml of 106 conidia/ml) of each isolate was brushed onto the roots of each plant with a paintbrush. Inoculated plants were planted in pots in a mixture of sterilized quartz sand:vermiculite:pearlite (2:1:1, v/v). The pots were placed under black shadecloth. The roots of five 1-year-old and five 3-year-old plants were brushed similarly with sterilized water as control treatments. After 30 days, symptoms similar to those on the original diseased plants were observed on the roots of all plants inoculated with the six isolates. The roots of non-inoculated plants remained healthy. The experiment was repeated. The same pathogen was re-isolated from the inoculated plants, but no pathogen was isolated from roots of the control plants. C. destructans var. destructans is widely distributed in soils (1), but to our knowledge, this is the first report of this fungus causing black root rot of Sanqi in China. References: (1) P. Charerri et al. Stud. Mycol. 68:57, 2011. (2) C. Y. Hu. New Rural Technol. 2:59, 2013 (in Chinese). (3) K. A. Seifert and P. E. Axelrood. Can. J. Plant Pathol. 20:115, 1998. (4) K. A. Seifert et al. Phytopathology 93:1533, 2003.
- Published
- 2014
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.