11 results on '"Nigro F"'
Search Results
2. First Report of Colletotrichum nymphaeae on Olive in Italy
- Author
-
Antelmi, I., primary, Sion, V., additional, and Nigro, F., additional
- Published
- 2019
- Full Text
- View/download PDF
3. First Report of Dactylonectria torresensis Causing Foot and Root Rot of Olive Trees
- Author
-
Nigro, F., primary, Antelmi, I., additional, Sion, V., additional, Parente, P., additional, and Pacifico, A., additional
- Published
- 2019
- Full Text
- View/download PDF
4. First Report of Leaf Spot Caused by Cylindrocladium pauciramosum on Dwarf Willow Myrtle in Italy
- Author
-
Polizzi, G., primary, Aiello, D., additional, Parlavecchio, G., additional, Vitale, A., additional, and Nigro, F., additional
- Published
- 2010
- Full Text
- View/download PDF
5. First Report of Crown Rot Caused by Cylindrocladium pauciramosum on Scarlet Honey Myrtle in Italy
- Author
-
Polizzi, G., primary, Aiello, D., additional, Castello, I., additional, Parlavecchio, G., additional, Vitale, A., additional, and Nigro, F., additional
- Published
- 2009
- Full Text
- View/download PDF
6. First Record of Verticillium dahliae on Potato in Malta
- Author
-
Pace-Lupi, T. G., primary, Porta-Puglia, A., additional, Ippolito, A., additional, and Nigro, F., additional
- Published
- 2006
- Full Text
- View/download PDF
7. First report of Stagonosporopsis pogostemonis causing leaf spot on cauliflower in Italy.
- Author
-
Habib W, Carlucci M, Fasano R, and Nigro F
- Abstract
First report of Stagonosporopsis pogostemonis causing leaf spot on cauliflower in Italy Wassim Habib
1 , Mariangela Carlucci2 , Roberto Fasano3 , Franco Nigro1,2 † 1 Centre of Research, Experimentation and Training in Agriculture (CRSFA) - Basile Caramia, via Cisternino 281, Locorotondo, 70010 Bari, Italy2 Department of Soil, Plant and Food Sciences, University of Bari - Aldo Moro, via Amendola 165A, 70126 Bari, Italy3 Corresponding author: F. Nigro. Email: franco.nigro@uniba.it Keywords: Phoma-like, Multi-locus gene sequencing, Brassica oleracea L. var. botrytis, Campania. In September 2022, a severe foliar disease was observed on 2-3-week-old 'Corsaro' and 'Parthenon' seedlings of cauliflower († Corresponding author: F. Nigro. Email: franco.nigro@uniba.it Keywords: Phoma-like, Multi-locus gene sequencing, Brassica oleracea L. var. botrytis, Campania. In September 2022, a severe foliar disease was observed on 2-3-week-old 'Corsaro' and 'Parthenon' seedlings of cauliflower ( Brassica oleracea L. var. botrytis ) grown under greenhouses in a nursery in Caserta province, Campania (Italy), with an incidence of 90% on about 150,000 plants. Affected plants showed numerous small, irregular, and depressed lesions bordered by a chlorotic halo on leaves that become necrotic, and later drop out giving a shot-hole effect (Fig. 1). Isolations were performed on leaf portions from 30 symptomatic samples which were surface-sterilised by dipping in 70 % ethanol for 30s, then in a sodium hypochlorite solution (1%) for 30s, and rinsed two times in distilled sterilised water. Tissue fragments were left to dry on sterile filter paper and then seeded on potato dextrose agar (PDA) amended with 0.5 g/L of streptomycin sulphate (Sigma-Aldrich S.R.L, Steinheim, Germany). After 6 to 8 days of incubation at 24 ± 1°C, colonies revealed a consistent growth of a Phoma-like fungus resembling Stagonosporopsis genus. On PDA, one-week-old colonies were dark olivaceous green to brown with white regular margin (Fig. 2B). Pycnidia (32-160 µm × 30-95 µm) were subglobose, and conidia (2.7-4.8 µm × 1-2.7 µm) ellipsoidal, with rounded ends, aseptate, with two polar guttules (Fig. 2C). All isolates had similar morphological features, therefore further analyses were performed on one representative strain (CRSFA.753.22). The multilocus phylogenetic approach using Maximum likelihood method and Tamura-Nei model on rDNA-ITS, TUB and RPB2 sequences (accession numbers: OQ318550, OQ326503, OQ326504) including reference strains of Stagonosporopsis (Dong et al. 2021) demonstrated that CRSFA.753.22 clustered with Stagonosporopsis pogostemonis Luo, Huang & Manawas holotype (ZHKUCC 21-0001) with 91% bootstrap support. ITS and RPB2 sequences had 100% BLAST match to ZHKUCC 21-0001, whereas TUB sequence had 99.69%. Pathogenicity tests were performed on 20 healthy 'Corsaro' plantlets. Leaves were surface sterilized with 70% alcohol and wounded with a sterile tip of a needle. A suspension of conidia and mycelial fragments, obtained from a 10-days-old colony of the strain CRSFA.753.22, was sprayed on the leaf surfaces at a distance of 20 cm. Five controls plants were inoculated with sterile distilled water. Plants were then covered with plastic bags and kept on the shelf in a growth chamber at 25° C, with a 12-h photoperiod. The first symptoms developed on leaves five days post-inoculation as irregular small brown spots, that were gradually expanded. Leaf tissues showed chlorosis which evolved into necrosis (Fig. 2A). Stagonosporopsis pogostemonis was consistently re-isolated from all diseased leaves, but not from control plants, thus fulfilling Koch's postulates. In Italy, Stagonosporopsis species have been reported as severe plant pathogens (Garibaldi et al. 2022; Guarnaccia et al. 2022), and this is the first report of the species S. pogostemonis in the country. References Dong, Z.Y., et al. 2021. Pathogens 10:1093. doi: 10.3390/pathogens10091093 Garibaldi, A., et al. 2022. Plant Pathol. J. 104:1157. doi: 10.1007/s42161-022-01138-7 Guarnaccia, V., et al. 2022. Plant Pathol. J. 104:1491. doi: 10.1007/s42161-022-01197-w.- Published
- 2023
- Full Text
- View/download PDF
8. First report of Ceratocystis ficicola causing wilt disease on common fig ( Ficus carica ) in Italy.
- Author
-
Habib W, Carlucci M, Manco L, Altamura G, Delle Donne AG, and Nigro F
- Abstract
Common fig (Ficus carica L.) in is one of the most important crops in the Mediterranean area. In Italy, it is grown on a total area of 2118 ha. In Apulia (South-eastern Italy), the annual production of fig exceeds 3200 tons annually and together with olive and grapevine, they characterize the Apulian agricultural panorama. In September 2021, symptoms of a vascular wilt disease and, in severe cases, decline tree mortality were observed in Salento area (Apulia). Symptomatic Affected plants showed symptoms of leaf wilt and different stages of disease expression, which begins with leaf chlorosis on shoots, followed by wilting, extensive defoliation and twig dieback. On the main branches andlower part of the trunk and in some cases on lateral branches, bark cracks and cankers were observed and extended wood discoloration was detected in cross sections. In two orchards located in Salice Salentino (Site 1) and Squinzano (Site 2), where disease incidence exceeded 80%, 3-5 wood discs per tree were gathered from affected tissues from two (Site 1) and four (Site 2) trees. Isolations were performed on malt extract agar 2% amended with 0.5 g L-1 streptomycin sulfate. A Ceratocystis species was recovered from all samples trees with high frequencies (83.3%). Two-week-old colonies on potato dextrose agar showed black ascomata with 300-600 µm wide bases and 1100-2250 µm long necks. On the tips of the necks, ascospores (5-6x4-5 µm) exuded in creamy white sticky masses. Endoconidia (5-9x4.5-7 µm) were abundant, cylindrical, aseptate, and produced in chains. Two monoconidial representative strains CRSFA.Cer.033 (Site 1) and CRSFA.Cer.035 (Site 2) were deposited in the DISSPA Di.S.S.P.A. collection of the University of Bari. Species identification was done through sequence analyses of rDNA internal transcribed spacer region (ITS) using ITS5/ITS4 primers (White et al. 1990), elongation factor 1 alpha gene (TEF) using EF1/EF2 (O'Donnell et al. 1998) and RNA polymerase II gene (RPB2) gene using RPB2-5F/FRPB2fRPB2-7cR (Liu et al. 1999). Sequences were deposited in NCBI GenBank (accession numbers: OQ329983-OQ335969 (ITS), OQ352265-OQ352266 (TEF), OQ352268-OQ352267 (RPB2)). The sequences of both Apulian isolates were identical. BLAST searches revealed high similarity to the sequences of two isolates of Ceratocystis ficicola Kajitani and Masuya from Japan: ex-type CMW38543 and CMW38544, specifically 98.41% identity matching with KY685076 (ITS), 100% with KY685079 (TEF), and 99.87% with KY685083 and KY685082 (RPB2). Pathogenicity tests were conducted, on six common fig 'Dottato' seedlings by inoculating one year-old twigs with mycelium plugs (Bolboli et al. 2022). Control plants were inoculated with PDA plugs without mycelium. After one month, all inoculated twigs showed symptoms of wilt. Forty days post-inoculation, the bark of inoculated twigs was removed, and longitudinal and transverse sections revealed wood discolorations extending above and below the inoculation point. Ceratocystis ficicola was consistently reisolated from symptomatic tissues and identified as described above, thus fulfilling Koch's postulates. Neither symptoms nor positive isolations were observed in control seedlings. The pathogen was first described in 2011 in Japan (Kajitani and Masuya, 2011) where it currently affects all fig-producing areas. In 2018, it was reported for the first time in the EPPO region in Greece (Tsopelas et al., 2021), and to our knowledge, this is the first report on its detection in Italy. Since February 2022, C. ficicola has been included in the EPPO alert list because of its potential to cause tree mortality and the difficulty of its eradication. Regional national surveys are therefore urgently needed to determine its distribution in the fig growing areas of Italy and limit its spread. References Bolboli, Z., et al. 2022. Mycol. Prog. 21:89. doi: 10.1007/s11557-022-01834-9 Kajitani, Y., and Masuya, H., 2011. Mycoscience 52:349. doi: 10.1007/s10267-011-0116-5 Liu, Y. J., et al. 1999. Mol. Biol. and Evol. 16:1799. doi: 10.1093/oxfordjournals.molbev.a026092 O'Donnell, K., et al. 1998. Proc Natl Acad Sci USA 95:2044. doi: 10.1073/pnas.95.5.2044 Tsopelas, P., et al. 2021. Phytopathol. Mediterr. 60:337. doi: 10.36253/phyto-12794 White, T. J., et al. 1990. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego. doi: 10.1016/0307-4412(91)90165-5.
- Published
- 2023
- Full Text
- View/download PDF
9. Identification of Arthrinium marii as Causal Agent of Olive Tree Dieback in Apulia (Southern Italy).
- Author
-
Gerin D, Nigro F, Faretra F, and Pollastro S
- Subjects
- Crops, Agricultural, Italy, Soil, Olea, Xylariales
- Abstract
Olive ( Olea europaea L. var. sativa ) is one of the most economically important tree crops grown in the Mediterranean basin. Arthrinium Kunze ex Fr. (teleomorph: Apiospora Sacc.) is a widespread fungal genus, and Arthrinium marii Larrondo & Calvo is a ubiquitous species, found in algae, soil, plants, and agricultural communities. A. marii was isolated from olive trees showing dieback from orchards located in Andria and in Fasano, Brindisi (Apulia, southern Italy) and identified based on morphological features and molecular analysis of four genomic regions (ITS, TUB2 , TEF1 , and LSU ). Two-year-old olive plants artificially inoculated with three representative A. marii isolates showed complete dieback within 6 months, and the fungus was reisolated, satisfying Koch's postulates. This is the first report of A. marii causing dieback on olive trees that could represent an important threat for olive cultivation.
- Published
- 2020
- Full Text
- View/download PDF
10. Genetic Diversity of Verticillium dahliae Populations From Olive and Potato in Lebanon.
- Author
-
Baroudy F, Putman AI, Habib W, Puri KD, Subbarao KV, and Nigro F
- Subjects
- DNA, Fungal genetics, Gene Flow, Genotype, Lebanon, Genetic Variation, Olea microbiology, Solanum tuberosum microbiology, Verticillium genetics
- Abstract
Verticillium dahliae is widely distributed in potato and olive fields in Lebanon, causing serious economic losses. However, little is known about the inoculum source, population structure, and genetic diversity of the pathogen or the mechanisms of dissemination within Lebanon. To understand the population structure, a total of 203 isolates sampled from olive (n = 78) and potato (n = 125) were characterized for species, mating type, and race, and the genetic relationships were delineated using 13 microsatellite markers. All isolates except one from potato were V. dahliae, with 55.1 and 12.1% race 1, and 43.6 and 83.1% race 2 in olive and potato, respectively. The genetic structure of the studied population was best described by two large and two small clusters. Membership in the two large clusters was determined by the presence or absence of the effector gene Ave1. Furthermore, genetic structure was moderately associated with the host of origin but was weakly associated with the geographic origin. All but four isolates represented by three multilocus haploid genotypes were MAT1-2. This study identified a clear lack of gene flow between virulence genotypes of V. dahliae despite the proximity of these cropping systems and the wide distribution of genetic diversity among hosts and geographic regions in Lebanon.
- Published
- 2019
- Full Text
- View/download PDF
11. Long-Distance Spread of Verticillium dahliae Through Rivers and Irrigation Systems.
- Author
-
Baroudy F, Habib W, Tanos G, Gerges E, Saab C, Choueiri E, and Nigro F
- Subjects
- DNA, Fungal genetics, Geography, Geologic Sediments microbiology, Lebanon, Mycology methods, Verticillium genetics, Water Movements, Agricultural Irrigation methods, Plant Diseases microbiology, Rivers microbiology, Soil Microbiology, Verticillium physiology
- Abstract
Verticillium dahliae Kleb. is a soilborne pathogen causing Verticillium wilt disease on several hosts. The pathogen survival structure (i.e., microsclerotia) can be efficiently spread by different dispersal methods. In the present study, the medium to long dispersal spread of the pathogen through rivers and irrigation canals was investigated. Samples of sediments (n = 29) were gathered from eight Lebanese rivers and three regional irrigation canals, in addition to samples of soil particles and plant residues (n = 14) from irrigation filters in commercial orchards. Specific conventional and real-time nested polymerase chain reaction assays detected the pathogen in six rivers-Al Kabir, Al Bared, Litani, Al Awali, Ostwan, and Litani South-and in all sampled canals-Ostwan, Al Bared, and Litani Canal 900. Starting DNA quantities ranged from 0.2 pg to 21.318 ng and an inoculum density, determined by a traditional plating method, varied between nondetectable and 0.2 microsclerotia/g. Viable V. dahliae microsclerotia were also found in residues collected from mesh-type irrigation filters of five commercial orchards. This study confirms that water is an important inoculum source of V. dahliae, being involved in the efficient spread of microsclerotia in Lebanese agricultural areas.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.