1. Magicity versus Superfluidity around ^{28}O viewed from the Study of ^{30}F.
- Author
-
Kahlbow J, Aumann T, Sorlin O, Kondo Y, Nakamura T, Nowacki F, Revel A, Achouri NL, Al Falou H, Atar L, Baba H, Boretzky K, Caesar C, Calvet D, Chae H, Chiga N, Corsi A, Delaunay F, Delbart A, Deshayes Q, Dombrádi Z, Douma CA, Elekes Z, Gašparić I, Gheller JM, Gibelin J, Gillibert A, Harakeh MN, Hirayama A, Holl M, Horvat A, Horváth Á, Hwang JW, Isobe T, Kalantar-Nayestanaki N, Kawase S, Kim S, Kisamori K, Kobayashi T, Körper D, Koyama S, Kuti I, Lapoux V, Lindberg S, Marqués FM, Masuoka S, Mayer J, Miki K, Murakami T, Najafi M, Nakano K, Nakatsuka N, Nilsson T, Obertelli A, Orr NA, Otsu H, Ozaki T, Panin V, Paschalis S, Rossi DM, Saito AT, Saito T, Sasano M, Sato H, Satou Y, Scheit H, Schindler F, Schrock P, Shikata M, Shimada K, Shimizu Y, Simon H, Sohler D, Stuhl L, Takeuchi S, Tanaka M, Thoennessen M, Törnqvist H, Togano Y, Tomai T, Tscheuschner J, Tsubota J, Uesaka T, Wang H, Yang Z, Yasuda M, and Yoneda K
- Abstract
The neutron-rich unbound fluorine isotope ^{30}F_{21} has been observed for the first time by measuring its neutron decay at the SAMURAI spectrometer (RIBF, RIKEN) in the quasifree proton knockout reaction of ^{31}Ne nuclei at 235 MeV/nucleon. The mass and thus one-neutron-separation energy of ^{30}F has been determined to be S_{n}=-472±58(stat)±33(sys) keV from the measurement of its invariant-mass spectrum. The absence of a sharp drop in S_{n}(^{30}F) shows that the "magic" N=20 shell gap is not restored close to ^{28}O, which is in agreement with our shell-model calculations that predict a near degeneracy between the neutron d and fp orbitals, with the 1p_{3/2} and 1p_{1/2} orbitals becoming more bound than the 0f_{7/2} one. This degeneracy and reordering of orbitals has two potential consequences: ^{28}O behaves like a strongly superfluid nucleus with neutron pairs scattering across shells, and both ^{29,31}F appear to be good two-neutron halo-nucleus candidates.
- Published
- 2024
- Full Text
- View/download PDF