26 results on '"Wang, Y. -J."'
Search Results
2. Far-Infrared Properties of Superconducting YBa2Cu3O7-S Films in High Magnetic Fields
- Author
-
Wang, Y. J, Burns, M. J, Delin, K. A, Li, M. Y, and Wu, M. K
- Abstract
We report the far-infrared reflectance and transmittance of superconducting ab-plane-oriented films in magnetic fields up to 30 Tesla.
- Published
- 1997
3. Visualizing the mixed bonding properties of liquid boron with high-resolution x-ray Compton scattering
- Author
-
Sit, P. H.-L., Watanabe, Y., Barbiellini, B., Wang, Y. J., Bansil, A., Paradis, Paul-Francois, Okada, Junpei T., Ishikawa, Takehiko, Itou, M., Sakurai, Y., Ishikawa, R., Hamaishi, M., Kimura, K., Ishikawa, T., and Nanao, S.
- Subjects
Condensed Matter - Materials Science ,Materials science ,X-ray ,Compton scattering ,General Physics and Astronomy ,High resolution ,chemistry.chemical_element ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Molecular physics ,Molecular dynamics ,Condensed Matter::Materials Science ,chemistry ,Covalent bond ,Physics::Atomic and Molecular Clusters ,Boron - Abstract
著者人数: 15名, 資料番号: SA1150061000
- Published
- 2014
4. Persistence of Covalent Bonding in Liquid Silicon Probed by Inelastic X-ray Scattering
- Author
-
Sit, P. H.-L., Wang, Y. J., Barbiellini, B., Bansil, A., Paradis, P.-F., Okada, Junpei T., Watanabe, Y., Ishikawa, Takehiko, Itou, M., Sakurai, Y., Ishikawa, R., Hamaishi, M., Masaki, T., Kimura, K., Ishikawa, T., and Nanao, S.
- Subjects
Condensed Matter - Materials Science ,Wannier function ,Phase transition ,education.field_of_study ,Materials science ,Silicon ,Scattering ,Population ,Compton scattering ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,General Physics and Astronomy ,chemistry.chemical_element ,Molecular physics ,Physics::Fluid Dynamics ,Condensed Matter::Soft Condensed Matter ,Molecular dynamics ,chemistry ,Covalent bond ,Atomic physics ,education - Abstract
Metallic liquid silicon at 1787K is investigated using x-ray Compton scattering. An excellent agreement is found between the measurements and the corresponding Car-Parrinello molecular dynamics simulations. Our results show persistence of covalent bonding in liquid silicon and provide support for the occurrence of theoretically predicted liquid-liquid phase transition in supercooled liquid states. The population of covalent bond pairs in liquid silicon is estimated to be 17% via a maximally-localized Wannier function analysis. Compton scattering is shown to be a sensitive probe of bonding effects in the liquid state., 5pages, 3 postscript figures
- Published
- 2012
5. Visualizing the Mixed Bonding Properties of Liquid Boron with High-Resolution X-Ray Compton Scattering
- Author
-
Okada, J. T., primary, Sit, P. H.-L., additional, Watanabe, Y., additional, Barbiellini, B., additional, Ishikawa, T., additional, Wang, Y. J., additional, Itou, M., additional, Sakurai, Y., additional, Bansil, A., additional, Ishikawa, R., additional, Hamaishi, M., additional, Paradis, P.-F., additional, Kimura, K., additional, and Nanao, S., additional
- Published
- 2015
- Full Text
- View/download PDF
6. Persistence of Covalent Bonding in Liquid Silicon Probed by Inelastic X-Ray Scattering
- Author
-
Okada, J. T., primary, Sit, P. H.-L., additional, Watanabe, Y., additional, Wang, Y. J., additional, Barbiellini, B., additional, Ishikawa, T., additional, Itou, M., additional, Sakurai, Y., additional, Bansil, A., additional, Ishikawa, R., additional, Hamaishi, M., additional, Masaki, T., additional, Paradis, P.-F., additional, Kimura, K., additional, and Nanao, S., additional
- Published
- 2012
- Full Text
- View/download PDF
7. Interaction-Induced Shift of the Cyclotron Resonance of Graphene Using Infrared Spectroscopy
- Author
-
Henriksen, E. A., primary, Cadden-Zimansky, P., additional, Jiang, Z., additional, Li, Z. Q., additional, Tung, L.-C., additional, Schwartz, M. E., additional, Takita, M., additional, Wang, Y.-J., additional, Kim, P., additional, and Stormer, H. L., additional
- Published
- 2010
- Full Text
- View/download PDF
8. Magnetoelastic Coupling through the Antiferromagnet-to-Ferromagnet Transition of Quasi-Two-Dimensional[Cu(HF2)(pyz)2]BF4Using Infrared Spectroscopy
- Author
-
Musfeldt, J. L., primary, Vergara, L. I., additional, Brinzari, T. V., additional, Lee, C., additional, Tung, L. C., additional, Kang, J., additional, Wang, Y. J., additional, Schlueter, J. A., additional, Manson, J. L., additional, and Whangbo, M.-H., additional
- Published
- 2009
- Full Text
- View/download PDF
9. Spin-Lattice Interactions Mediated by Magnetic Field
- Author
-
Cao, J., primary, Vergara, L. I., additional, Musfeldt, J. L., additional, Litvinchuk, A. P., additional, Wang, Y. J., additional, Park, S., additional, and Cheong, S.-W., additional
- Published
- 2008
- Full Text
- View/download PDF
10. Cyclotron Resonance in Bilayer Graphene
- Author
-
Henriksen, E. A., primary, Jiang, Z., additional, Tung, L.-C., additional, Schwartz, M. E., additional, Takita, M., additional, Wang, Y.-J., additional, Kim, P., additional, and Stormer, H. L., additional
- Published
- 2008
- Full Text
- View/download PDF
11. Infrared Spectroscopy of Landau Levels of Graphene
- Author
-
Jiang, Z., primary, Henriksen, E. A., additional, Tung, L. C., additional, Wang, Y.-J., additional, Schwartz, M. E., additional, Han, M. Y., additional, Kim, P., additional, and Stormer, H. L., additional
- Published
- 2007
- Full Text
- View/download PDF
12. Heavy Fermion Fluid in High Magnetic Fields: An Infrared Study ofCeRu4Sb12
- Author
-
Dordevic, S. V., primary, Beach, K. S. D., additional, Takeda, N., additional, Wang, Y. J., additional, Maple, M. B., additional, and Basov, D. N., additional
- Published
- 2006
- Full Text
- View/download PDF
13. Blocking of the Polaron Effect and Spin-Split Cyclotron Resonance in a Two-Dimensional Electron Gas
- Author
-
Wu, X. G., primary, Peeters, F. M., additional, Wang, Y. J., additional, and McCombe, B. D., additional
- Published
- 2000
- Full Text
- View/download PDF
14. Structural Critical Scattering Study of Mg-DopedCuGeO3
- Author
-
Wang, Y. J., primary, Kiryukhin, V., additional, Birgeneau, R. J., additional, Masuda, T., additional, Tsukada, I., additional, and Uchinokura, K., additional
- Published
- 1999
- Full Text
- View/download PDF
15. Resonant Magnetopolaron Effects due to Interface Phonons inGaAs/AlGaAsMultiple Quantum Well Structures
- Author
-
Wang, Y. J., primary, Nickel, H. A., additional, McCombe, B. D., additional, Peeters, F. M., additional, Shi, J. M., additional, Hai, G. Q., additional, Wu, X.-G., additional, Eustis, T. J., additional, and Schaff, W., additional
- Published
- 1997
- Full Text
- View/download PDF
16. Magnetic-Field-Induced Metal-Insulator Transitions in Multiple-Quantum-Well Structures
- Author
-
Wang, Y. J., primary, McCombe, B. D., additional, Meisels, R., additional, Kuchar, F., additional, and Schaff, W., additional
- Published
- 1995
- Full Text
- View/download PDF
17. Many-electron effects on quasi-two-dimensional shallow-donor impurity states in high magnetic fields
- Author
-
Cheng, J.-P., primary, Wang, Y. J., additional, McCombe, B. D., additional, and Schaff, W., additional
- Published
- 1993
- Full Text
- View/download PDF
18. Magnetism of rare-earth–transition-metal nanoscale multilayers
- Author
-
Shan, Z. S., primary, Sellmyer, D. J., additional, Jaswal, S. S., additional, Wang, Y. J., additional, and Shen, J. X., additional
- Published
- 1989
- Full Text
- View/download PDF
19. Stringent Tests of Lorentz Invariance Violation from LHAASO Observations of GRB 221009A.
- Author
-
Cao Z, Aharonian F, Axikegu, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Bian W, Bukevich AV, Cao Q, Cao WY, Cao Z, Chang J, Chang JF, Chen AM, Chen ES, Chen HX, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen S, Chen SH, Chen SZ, Chen TL, Chen Y, Cheng N, Cheng YD, Cui MY, Cui SW, Cui XH, Cui YD, Dai BZ, Dai HL, Dai ZG, Danzengluobu, Dong XQ, Duan KK, Fan JH, Fan YZ, Fang J, Fang JH, Fang K, Feng CF, Feng H, Feng L, Feng SH, Feng XT, Feng Y, Feng YL, Gabici S, Gao B, Gao CD, Gao Q, Gao W, Gao WK, Ge MM, Geng LS, Giacinti G, Gong GH, Gou QB, Gu MH, Guo FL, Guo XL, Guo YQ, Guo YY, Han YA, Hasan M, He HH, He HN, He JY, He Y, Hor YK, Hou BW, Hou C, Hou X, Hu HB, Hu Q, Hu SC, Huang DH, Huang TQ, Huang WJ, Huang XT, Huang XY, Huang Y, Ji XL, Jia HY, Jia K, Jiang K, Jiang XW, Jiang ZJ, Jin M, Kang MM, Karpikov I, Kuleshov D, Kurinov K, Li BB, Li CM, Li C, Li C, Li D, Li F, Li HB, Li HC, Li J, Li J, Li K, Li SD, Li WL, Li WL, Li XR, Li X, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu DB, Liu H, Liu HD, Liu J, Liu JL, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Luo Q, Luo Y, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Min Z, Mitthumsiri W, Mu HJ, Nan YC, Neronov A, Ou LJ, Pattarakijwanich P, Pei ZY, Qi JC, Qi MY, Qiao BQ, Qin JJ, Raza A, Ruffolo D, Sáiz A, Saeed M, Semikoz D, Shao L, Shchegolev O, Sheng XD, Shu FW, Song HC, Stenkin YV, Stepanov V, Su Y, Sun DX, Sun QN, Sun XN, Sun ZB, Takata J, Tam PHT, Tang QW, Tang R, Tang ZB, Tian WW, Wang C, Wang CB, Wang GW, Wang HG, Wang HH, Wang JC, Wang K, Wang K, Wang LP, Wang LY, Wang PH, Wang R, Wang W, Wang XG, Wang XY, Wang Y, Wang YD, Wang YJ, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu QW, Wu S, Wu XF, Wu YS, Xi SQ, Xia J, Xiang GM, Xiao DX, Xiao G, Xin YL, Xing Y, Xiong DR, Xiong Z, Xu DL, Xu RF, Xu RX, Xu WL, Xue L, Yan DH, Yan JZ, Yan T, Yang CW, Yang CY, Yang F, Yang FF, Yang LL, Yang MJ, Yang RZ, Yang WX, Yao YH, Yao ZG, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Yue H, Zeng HD, Zeng TX, Zeng W, Zha M, Zhang BB, Zhang F, Zhang H, Zhang HM, Zhang HY, Zhang JL, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SB, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zhao XH, Zheng F, Zhong WJ, Zhou B, Zhou H, Zhou JN, Zhou M, Zhou P, Zhou R, Zhou XX, Zhou XX, Zhu BY, Zhu CG, Zhu FR, Zhu H, Zhu KJ, Zou YC, and Zuo X
- Abstract
On 9 October 2022, the Large High Altitude Air Shower Observatory (LHAASO) reported the observation of the very early TeV afterglow of the brightest-of-all-time gamma-ray burst 221009A, recording the highest photon statistics in the TeV band ever obtained from a gamma-ray burst. We use this unique observation to place stringent constraints on the energy dependence of the speed of light in vacuum, a manifestation of Lorentz invariance violation (LIV) predicted by some quantum gravity (QG) theories. Our results show that the 95% confidence level lower limits on the QG energy scales are E_{QG,1}>10 times the Planck energy E_{Pl} for the linear LIV effect, and E_{QG,2}>6×10^{-8}E_{Pl} for the quadratic LIV effect. Our limits on the quadratic LIV case improve previous best bounds by factors of 5-7.
- Published
- 2024
- Full Text
- View/download PDF
20. Constraints on Ultraheavy Dark Matter Properties from Dwarf Spheroidal Galaxies with LHAASO Observations.
- Author
-
Cao Z, Aharonian F, An Q, Axikegu, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai JT, Cao Q, Cao WY, Cao Z, Chang J, Chang JF, Chen AM, Chen ES, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen Y, Cheng N, Cheng YD, Cui MY, Cui SW, Cui XH, Cui YD, Dai BZ, Dai HL, Dai ZG, Danzengluobu, Della Volpe D, Dong XQ, Duan KK, Fan JH, Fan YZ, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng XT, Feng YL, Gabici S, Gao B, Gao CD, Gao LQ, Gao Q, Gao W, Gao WK, Ge MM, Geng LS, Giacinti G, Gong GH, Gou QB, Gu MH, Guo FL, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He JY, He XB, He Y, Heller M, Hor YK, Hou BW, Hou C, Hou X, Hu HB, Hu Q, Hu SC, Huang DH, Huang TQ, Huang WJ, Huang XT, Huang XY, Huang Y, Huang ZC, Ji XL, Jia HY, Jia K, Jiang K, Jiang XW, Jiang ZJ, Jin M, Kang MM, Ke T, Kuleshov D, Kurinov K, Li BB, Li C, Li C, Li D, Li F, Li HB, Li HC, Li HY, Li J, Li J, Li J, Li K, Li WL, Li WL, Li XR, Li X, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Lu R, Luo Q, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Min Z, Mitthumsiri W, Mu HJ, Nan YC, Neronov A, Ou ZW, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Qi YQ, Qiao BQ, Qin JJ, Ruffolo D, Sáiz A, Semikoz D, Shao CY, Shao L, Shchegolev O, Sheng XD, Shu FW, Song HC, Stenkin YV, Stepanov V, Su Y, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang QW, Tang ZB, Tian WW, Wang C, Wang CB, Wang GW, Wang HG, Wang HH, Wang JC, Wang K, Wang LP, Wang LY, Wang PH, Wang R, Wang W, Wang XG, Wang XY, Wang Y, Wang YD, Wang YJ, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu XF, Wu YS, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao DX, Xiao G, Xin GG, Xin YL, Xing Y, Xiong Z, Xu DL, Xu RF, Xu RX, Xu WL, Xue L, Yan DH, Yan JZ, Yan T, Yang CW, Yang F, Yang FF, Yang HW, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Yue H, Zeng HD, Zeng TX, Zeng W, Zha M, Zhang BB, Zhang F, Zhang HM, Zhang HY, Zhang JL, Zhang LX, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SB, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zhou B, Zhou H, Zhou JN, Zhou M, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, and Zuo X
- Abstract
In this Letter we try to search for signals generated by ultraheavy dark matter at the Large High Altitude Air Shower Observatory (LHAASO) data. We look for possible γ rays by dark matter annihilation or decay from 16 dwarf spheroidal galaxies in the field of view of the LHAASO. Dwarf spheroidal galaxies are among the most promising targets for indirect detection of dark matter that have low fluxes of astrophysical γ-ray background while having large amount of dark matter. By analyzing more than 700 days of observational data at LHAASO, no significant dark matter signal from 1 TeV to 1 EeV is detected. Accordingly we derive the most stringent constraints on the ultraheavy dark matter annihilation cross section up to EeV. The constraints on the lifetime of dark matter in decay mode are also derived.
- Published
- 2024
- Full Text
- View/download PDF
21. Measurements of All-Particle Energy Spectrum and Mean Logarithmic Mass of Cosmic Rays from 0.3 to 30 PeV with LHAASO-KM2A.
- Author
-
Cao Z, Aharonian F, Axikegu, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Bian W, Bukevich AV, Cao Q, Cao WY, Cao Z, Chang J, Chang JF, Chen AM, Chen ES, Chen HX, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen S, Chen SH, Chen SZ, Chen TL, Chen Y, Cheng N, Cheng YD, Cui MY, Cui SW, Cui XH, Cui YD, Dai BZ, Dai HL, Dai ZG, Danzengluobu, Dong XQ, Duan KK, Fan JH, Fan YZ, Fang J, Fang JH, Fang K, Feng CF, Feng H, Feng L, Feng SH, Feng XT, Feng Y, Feng YL, Gabici S, Gao B, Gao CD, Gao Q, Gao W, Gao WK, Ge MM, Geng LS, Giacinti G, Gong GH, Gou QB, Gu MH, Guo FL, Guo XL, Guo YQ, Guo YY, Han YA, Hasan M, He HH, He HN, He JY, He Y, Hor YK, Hou BW, Hou C, Hou X, Hu HB, Hu Q, Hu SC, Huang DH, Huang TQ, Huang WJ, Huang XT, Huang XY, Huang Y, Ji XL, Jia HY, Jia K, Jiang K, Jiang XW, Jiang ZJ, Jin M, Kang MM, Karpikov I, Kuleshov D, Kurinov K, Li BB, Li CM, Li C, Li C, Li D, Li F, Li HB, Li HC, Li J, Li J, Li K, Li SD, Li WL, Li WL, Li XR, Li X, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu DB, Liu H, Liu HD, Liu J, Liu JL, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Luo Q, Luo Y, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Min Z, Mitthumsiri W, Mu HJ, Nan YC, Neronov A, Ou LJ, Pattarakijwanich P, Pei ZY, Qi JC, Qi MY, Qiao BQ, Qin JJ, Raza A, Ruffolo D, Sáiz A, Saeed M, Semikoz D, Shao L, Shchegolev O, Sheng XD, Shu FW, Song HC, Stenkin YV, Stepanov V, Su Y, Sun DX, Sun QN, Sun XN, Sun ZB, Takata J, Tam PHT, Tang QW, Tang R, Tang ZB, Tian WW, Wang C, Wang CB, Wang GW, Wang HG, Wang HH, Wang JC, Wang K, Wang K, Wang LP, Wang LY, Wang PH, Wang R, Wang W, Wang XG, Wang XY, Wang Y, Wang YD, Wang YJ, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu QW, Wu S, Wu XF, Wu YS, Xi SQ, Xia J, Xiang GM, Xiao DX, Xiao G, Xin YL, Xing Y, Xiong DR, Xiong Z, Xu DL, Xu RF, Xu RX, Xu WL, Xue L, Yan DH, Yan JZ, Yan T, Yang CW, Yang CY, Yang F, Yang FF, Yang LL, Yang MJ, Yang RZ, Yang WX, Yao YH, Yao ZG, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Yue H, Zeng HD, Zeng TX, Zeng W, Zha M, Zhang BB, Zhang F, Zhang H, Zhang HM, Zhang HY, Zhang JL, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SB, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zhao XH, Zheng F, Zhong WJ, Zhou B, Zhou H, Zhou JN, Zhou M, Zhou P, Zhou R, Zhou XX, Zhou XX, Zhu BY, Zhu CG, Zhu FR, Zhu H, Zhu KJ, Zou YC, and Zuo X
- Abstract
We present the measurements of all-particle energy spectrum and mean logarithmic mass of cosmic rays in the energy range of 0.3-30 PeV using data collected from LHAASO-KM2A between September 2021 and December 2022, which is based on a nearly composition-independent energy reconstruction method, achieving unprecedented accuracy. Our analysis reveals the position of the knee at 3.67±0.05±0.15 PeV. Below the knee, the spectral index is found to be -2.7413±0.0004±0.0050, while above the knee, it is -3.128±0.005±0.027, with the sharpness of the transition measured with a statistical error of 2%. The mean logarithmic mass of cosmic rays is almost heavier than helium in the whole measured energy range. It decreases from 1.7 at 0.3 PeV to 1.3 at 3 PeV, representing a 24% decline following a power law with an index of -0.1200±0.0003±0.0341. This is equivalent to an increase in abundance of light components. Above the knee, the mean logarithmic mass exhibits a power law trend towards heavier components, which is reversal to the behavior observed in the all-particle energy spectrum. Additionally, the knee position and the change in power-law index are approximately the same. These findings suggest that the knee observed in the all-particle spectrum corresponds to the knee of the light component, rather than the medium-heavy components.
- Published
- 2024
- Full Text
- View/download PDF
22. Measurement of Ultra-High-Energy Diffuse Gamma-Ray Emission of the Galactic Plane from 10 TeV to 1 PeV with LHAASO-KM2A.
- Author
-
Cao Z, Aharonian F, An Q, Axikegu, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai JT, Cao Q, Cao WY, Cao Z, Chang J, Chang JF, Chen AM, Chen ES, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen Y, Cheng N, Cheng YD, Cui MY, Cui SW, Cui XH, Cui YD, Dai BZ, Dai HL, Dai ZG, Danzengluobu, Della Volpe D, Dong XQ, Duan KK, Fan JH, Fan YZ, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng XT, Feng YL, Gabici S, Gao B, Gao CD, Gao LQ, Gao Q, Gao W, Gao WK, Ge MM, Geng LS, Giacinti G, Gong GH, Gou QB, Gu MH, Guo FL, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He JY, He XB, He Y, Heller M, Hor YK, Hou BW, Hou C, Hou X, Hu HB, Hu Q, Hu SC, Huang DH, Huang TQ, Huang WJ, Huang XT, Huang XY, Huang Y, Huang ZC, Ji XL, Jia HY, Jia K, Jiang K, Jiang XW, Jiang ZJ, Jin M, Kang MM, Ke T, Kuleshov D, Kurinov K, Li BB, Li C, Li C, Li D, Li F, Li HB, Li HC, Li HY, Li J, Li J, Li J, Li K, Li WL, Li WL, Li XR, Li X, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Lu R, Luo Q, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Min Z, Mitthumsiri W, Mu HJ, Nan YC, Neronov A, Ou ZW, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Qi YQ, Qiao BQ, Qin JJ, Ruffolo D, Sáiz A, Semikoz D, Shao CY, Shao L, Shchegolev O, Sheng XD, Shu FW, Song HC, Stenkin YV, Stepanov V, Su Y, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang QW, Tang ZB, Tian WW, Wang C, Wang CB, Wang GW, Wang HG, Wang HH, Wang JC, Wang K, Wang LP, Wang LY, Wang PH, Wang R, Wang W, Wang XG, Wang XY, Wang Y, Wang YD, Wang YJ, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu XF, Wu YS, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao DX, Xiao G, Xin GG, Xin YL, Xing Y, Xiong Z, Xu DL, Xu RF, Xu RX, Xu WL, Xue L, Yan DH, Yan JZ, Yan T, Yang CW, Yang F, Yang FF, Yang HW, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Yue H, Zeng HD, Zeng TX, Zeng W, Zha M, Zhang BB, Zhang F, Zhang HM, Zhang HY, Zhang JL, Zhang LX, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SB, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zhou B, Zhou H, Zhou JN, Zhou M, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, and Zuo X
- Abstract
The diffuse Galactic γ-ray emission, mainly produced via interactions between cosmic rays and the interstellar medium and/or radiation field, is a very important probe of the distribution, propagation, and interaction of cosmic rays in the Milky Way. In this Letter, we report the measurements of diffuse γ rays from the Galactic plane between 10 TeV and 1 PeV energies, with the square kilometer array of the Large High Altitude Air Shower Observatory (LHAASO). Diffuse emissions from the inner (15°
10 TeV). The energy spectrum in the inner Galaxy regions can be described by a power-law function with an index of -2.99±0.04, which is different from the curved spectrum as expected from hadronic interactions between locally measured cosmic rays and the line-of-sight integrated gas content. Furthermore, the measured flux is higher by a factor of ∼3 than the prediction. A similar spectrum with an index of -2.99±0.07 is found in the outer Galaxy region, and the absolute flux for 10≲E≲60 TeV is again higher than the prediction for hadronic cosmic ray interactions. The latitude distributions of the diffuse emission are consistent with the gas distribution, while the longitude distributions show clear deviation from the gas distribution. The LHAASO measurements imply that either additional emission sources exist or cosmic ray intensities have spatial variations. - Published
- 2023
- Full Text
- View/download PDF
23. Constraints on Heavy Decaying Dark Matter from 570 Days of LHAASO Observations.
- Author
-
Cao Z, Aharonian F, An Q, Axikegu, Bai LX, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai JT, Cao Z, Chang J, Chang JF, Chen ES, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen Y, Cheng HL, Cheng N, Cheng YD, Cui SW, Cui XH, Cui YD, D'Ettorre Piazzoli B, Dai BZ, Dai HL, Dai ZG, Danzengluobu, Della Volpe D, Duan KK, Fan JH, Fan YZ, Fan ZX, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng XT, Feng YL, Gao B, Gao CD, Gao LQ, Gao Q, Gao W, Gao WK, Ge MM, Geng LS, Gong GH, Gou QB, Gu MH, Guo FL, Guo JG, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He SL, He XB, He Y, Heller M, Hor YK, Hou C, Hou X, Hu HB, Hu Q, Hu S, Hu SC, Hu XJ, Huang DH, Huang WH, Huang XT, Huang XY, Huang Y, Huang ZC, Ji XL, Jia HY, Jia K, Jiang K, Jiang ZJ, Jin M, Kang MM, Ke T, Kuleshov D, Levochkin K, Li BB, Li C, Li C, Li F, Li HB, Li HC, Li HY, Li J, Li J, Li J, Li K, Li WL, Li XR, Li X, Li X, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JS, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Long WJ, Lu R, Luo Q, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Masood A, Min Z, Mitthumsiri W, Nan YC, Ou ZW, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Qi YQ, Qiao BQ, Qin JJ, Ruffolo D, Sáiz A, Shao CY, Shao L, Shchegolev O, Sheng XD, Shi JY, Song HC, Stenkin YV, Stepanov V, Su Y, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang ZB, Tian WW, Wang BD, Wang C, Wang H, Wang HG, Wang JC, Wang JS, Wang LP, Wang LY, Wang R, Wang RN, Wang W, Wang XG, Wang XY, Wang Y, Wang YD, Wang YJ, Wang YP, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu XF, Wu YS, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao DX, Xiao G, Xin GG, Xin YL, Xing Y, Xiong Z, Xu DL, Xu RX, Xue L, Yan DH, Yan JZ, Yang CW, Yang FF, Yang HW, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Yue H, Zeng HD, Zeng TX, Zeng W, Zeng ZK, Zha M, Zhai XX, Zhang BB, Zhang F, Zhang HM, Zhang HY, Zhang JL, Zhang LX, Zhang L, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SB, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang YL, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zheng Y, Zhou B, Zhou H, Zhou JN, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, Zuo X, Ando S, Chianese M, Fiorillo DFG, Miele G, and Ng KCY
- Abstract
The kilometer square array (KM2A) of the large high altitude air shower observatory (LHAASO) aims at surveying the northern γ-ray sky at energies above 10 TeV with unprecedented sensitivity. γ-ray observations have long been one of the most powerful tools for dark matter searches, as, e.g., high-energy γ rays could be produced by the decays of heavy dark matter particles. In this Letter, we present the first dark matter analysis with LHAASO-KM2A, using the first 340 days of data from 1/2-KM2A and 230 days of data from 3/4-KM2A. Several regions of interest are used to search for a signal and account for the residual cosmic-ray background after γ/hadron separation. We find no excess of dark matter signals, and thus place some of the strongest γ-ray constraints on the lifetime of heavy dark matter particles with mass between 10^{5} and 10^{9} GeV. Our results with LHAASO are robust, and have important implications for dark matter interpretations of the diffuse astrophysical high-energy neutrino emission.
- Published
- 2022
- Full Text
- View/download PDF
24. Exploring Lorentz Invariance Violation from Ultrahigh-Energy γ Rays Observed by LHAASO.
- Author
-
Cao Z, Aharonian F, An Q, Axikegu, Bai LX, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai H, Cai JT, Cao Z, Chang J, Chang JF, Chen BM, Chen ES, Chen J, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen XL, Chen Y, Cheng N, Cheng YD, Cui SW, Cui XH, Cui YD, Piazzoli BD, Dai BZ, Dai HL, Dai ZG, Danzengluobu, Della Volpe D, Dong XJ, Duan KK, Fan JH, Fan YZ, Fan ZX, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng YL, Gao B, Gao CD, Gao LQ, Gao Q, Gao W, Ge MM, Geng LS, Gong GH, Gou QB, Gu MH, Guo FL, Guo JG, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He JC, He SL, He XB, He Y, Heller M, Hor YK, Hou C, Hou X, Hu HB, Hu S, Hu SC, Hu XJ, Huang DH, Huang QL, Huang WH, Huang XT, Huang XY, Huang ZC, Ji F, Ji XL, Jia HY, Jiang K, Jiang ZJ, Jin C, Ke T, Kuleshov D, Levochkin K, Li BB, Li C, Li C, Li F, Li HB, Li HC, Li HY, Li J, Li J, Li K, Li WL, Li XR, Li X, Li X, Li Y, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JS, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Liu ZX, Long WJ, Lu R, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Masood A, Min Z, Mitthumsiri W, Montaruli T, Nan YC, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Qi YQ, Qiao BQ, Qin JJ, Ruffolo D, Rulev V, Sáiz A, Shao L, Shchegolev O, Sheng XD, Shi JR, Song HC, Stenkin YV, Stepanov V, Su Y, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang ZB, Tian WW, Wang BD, Wang C, Wang H, Wang HG, Wang JC, Wang JS, Wang LP, Wang LY, Wang RN, Wang W, Wang W, Wang XG, Wang XJ, Wang XY, Wang Y, Wang YD, Wang YJ, Wang YP, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu WX, Wu XF, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao DX, Xiao G, Xiao HB, Xin GG, Xin YL, Xing Y, Xu DL, Xu RX, Xue L, Yan DH, Yan JZ, Yang CW, Yang FF, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Zeng HD, Zeng TX, Zeng W, Zeng ZK, Zha M, Zhai XX, Zhang BB, Zhang HM, Zhang HY, Zhang JL, Zhang JW, Zhang LX, Zhang L, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang YL, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zheng Y, Zhou B, Zhou H, Zhou JN, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, and Zuo X
- Abstract
Recently, the LHAASO Collaboration published the detection of 12 ultrahigh-energy γ-ray sources above 100 TeV, with the highest energy photon reaching 1.4 PeV. The first detection of PeV γ rays from astrophysical sources may provide a very sensitive probe of the effect of the Lorentz invariance violation (LIV), which results in decay of high-energy γ rays in the superluminal scenario and hence a sharp cutoff of the energy spectrum. Two highest energy sources are studied in this work. No signature of the existence of the LIV is found in their energy spectra, and the lower limits on the LIV energy scale are derived. Our results show that the first-order LIV energy scale should be higher than about 10^{5} times the Planck scale M_{Pl} and that the second-order LIV scale is >10^{-3}M_{Pl}. Both limits improve by at least one order of magnitude the previous results.
- Published
- 2022
- Full Text
- View/download PDF
25. Extended Very-High-Energy Gamma-Ray Emission Surrounding PSR J0622+3749 Observed by LHAASO-KM2A.
- Author
-
Aharonian F, An Q, Axikegu, Bai LX, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai H, Cai JT, Cao Z, Cao Z, Chang J, Chang JF, Chang XC, Chen BM, Chen J, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen XL, Chen Y, Cheng N, Cheng YD, Cui SW, Cui XH, Cui YD, Dai BZ, Dai HL, Dai ZG, Danzengluobu, Della Volpe D, D'Ettorre Piazzoli B, Dong XJ, Fan JH, Fan YZ, Fan ZX, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng YL, Gao B, Gao CD, Gao Q, Gao W, Ge MM, Geng LS, Gong GH, Gou QB, Gu MH, Guo JG, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He JC, He SL, He XB, He Y, Heller M, Hor YK, Hou C, Hou X, Hu HB, Hu S, Hu SC, Hu XJ, Huang DH, Huang QL, Huang WH, Huang XT, Huang ZC, Ji F, Ji XL, Jia HY, Jiang K, Jiang ZJ, Jin C, Kuleshov D, Levochkin K, Li BB, Li C, Li C, Li F, Li HB, Li HC, Li HY, Li J, Li K, Li WL, Li X, Li X, Li XR, Li Y, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JS, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu YN, Liu ZX, Long WJ, Lu R, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Masood A, Mitthumsiri W, Montaruli T, Nan YC, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Ruffolo D, Rulev V, Sáiz A, Shao L, Shchegolev O, Sheng XD, Shi JR, Song HC, Stenkin YV, Stepanov V, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang ZB, Tian WW, Wang BD, Wang C, Wang H, Wang HG, Wang JC, Wang JS, Wang LP, Wang LY, Wang RN, Wang W, Wang W, Wang XG, Wang XJ, Wang XY, Wang YD, Wang YJ, Wang YP, Wang Z, Wang Z, Wang ZH, Wang ZX, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu WX, Wu XF, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao G, Xiao HB, Xin GG, Xin YL, Xing Y, Xu DL, Xu RX, Xue L, Yan DH, Yang CW, Yang FF, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Zeng HD, Zeng TX, Zeng W, Zeng ZK, Zha M, Zhai XX, Zhang BB, Zhang HM, Zhang HY, Zhang JL, Zhang JW, Zhang L, Zhang L, Zhang LX, Zhang PF, Zhang PP, Zhang R, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang Y, Zhang Y, Zhang YF, Zhang YL, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zheng Y, Zhou B, Zhou H, Zhou JN, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, Zuo X, and Huang XY
- Abstract
We report the discovery of an extended very-high-energy (VHE) gamma-ray source around the location of the middle-aged (207.8 kyr) pulsar PSR J0622+3749 with the Large High-Altitude Air Shower Observatory (LHAASO). The source is detected with a significance of 8.2σ for E>25 TeV assuming a Gaussian template. The best-fit location is (right ascension, declination) =(95.47°±0.11°,37.92°±0.09°), and the extension is 0.40°±0.07°. The energy spectrum can be described by a power-law spectrum with an index of -2.92±0.17_{stat}±0.02_{sys}. No clear extended multiwavelength counterpart of the LHAASO source has been found from the radio to sub-TeV bands. The LHAASO observations are consistent with the scenario that VHE electrons escaped from the pulsar, diffused in the interstellar medium, and scattered the interstellar radiation field. If interpreted as the pulsar halo scenario, the diffusion coefficient, inferred for electrons with median energies of ∼160 TeV, is consistent with those obtained from the extended halos around Geminga and Monogem and much smaller than that derived from cosmic ray secondaries. The LHAASO discovery of this source thus likely enriches the class of so-called pulsar halos and confirms that high-energy particles generally diffuse very slowly in the disturbed medium around pulsars.
- Published
- 2021
- Full Text
- View/download PDF
26. Magnetoelastic coupling through the antiferromagnet-to-ferromagnet transition of quasi-two-dimensional [Cu(HF2)(pyz)2]BF4 using infrared spectroscopy.
- Author
-
Musfeldt JL, Vergara LI, Brinzari TV, Lee C, Tung LC, Kang J, Wang YJ, Schlueter JA, Manson JL, and Whangbo MH
- Abstract
We investigated magnetoelastic coupling through the field-driven transition to the fully polarized magnetic state in quasi-two-dimensional [Cu(HF2)(pyz)2]BF4 by magnetoinfrared spectroscopy. This transition modifies out-of-plane ring distortion and bending vibrational modes of the pyrazine ligand. The extent of these distortions increases with the field, systematically tracking the low-temperature magnetization. These distortions weaken the antiferromagnetic spin exchange, a finding that provides important insight into magnetic transitions in other copper halides.
- Published
- 2009
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.