P. St-Jean, Alexandre Dauphin, L. Le Gratiet, Pietro Massignan, Jacqueline Bloch, Bastián Real, Sylvain Ravets, Isabelle Sagnes, Aristide Lemaître, O. Jamadi, Alberto Amo, M. Milicevic, A. Harouri, Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. SIMCON - First-principles approaches to condensed matter physics: quantum effects and complexity, Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Ciencies Fotoniques [Castelldefels] (ICFO), Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS), and ANR-16-CE30-0021,QFL,Fluides Quantiques de Lumière(2016)
Suppl. Mat. added; improved data/error analysis; International audience; Topological materials rely on engineering global properties of their bulk energy bands called topological invariants. These invariants, usually defined over the entire Brillouin zone, are related to the existence of protected edge states. However, for an important class of Hamiltonians corresponding to 2D lattices with time-reversal and chiral symmetry (e.g., graphene), the existence of edge states is linked to invariants that are not defined over the full 2D Brillouin zone, but on reduced 1D subspaces. Here, we demonstrate a novel scheme based on a combined real- and momentum-space measurement to directly access these 1D topological invariants in lattices of semiconductor microcavities confining exciton polaritons. We extract these invariants in arrays emulating the physics of regular and critically compressed graphene where Dirac cones have merged. Our scheme provides a direct evidence of the bulk-edge correspondence in these systems and opens the door to the exploration of more complex topological effects, e.g., involving disorder and interactions.