1. Observation of microscale superlubricity in graphite.
- Author
-
Liu Z, Yang J, Grey F, Liu JZ, Liu Y, Wang Y, Yang Y, Cheng Y, and Zheng Q
- Abstract
Upon shearing a microscale lithographically defined graphite mesa, the sheared section retracts spontaneously to minimize interface energy. Here, we demonstrate a sixfold symmetry of the self-retraction and provide a first experimental estimate of the frictional force involved, as direct evidence that the self-retraction is due to superlubricity, where ultralow friction occurs between incommensurate surfaces. The effect is remarkable because it occurs reproducibly under ambient conditions and over a contact area of up to 10×10 μm2, more than 7 orders of magnitude larger than previous scanning-probe-based studies of superlubricity in graphite. By analyzing the sheared interface, we show how the grain structure of highly oriented pyrolitic graphite determines the probability of self-retraction. Our results demonstrate that such self-retraction provides a novel probe of superlubricity, and the robustness of the phenomenon opens the way for practical applications of superlubricity in micromechanical systems.
- Published
- 2012
- Full Text
- View/download PDF