5 results on '"Hu, X. J."'
Search Results
2. Resonant Raman Scattering of the Smallest Single-Walled Carbon Nanotubes
- Author
-
Tang, Z. K., primary, Zhai, J. P., additional, Tong, Y. Y., additional, Hu, X. J., additional, Saito, R., additional, Feng, Y. J., additional, and Sheng, Ping, additional
- Published
- 2008
- Full Text
- View/download PDF
3. Constraints on Heavy Decaying Dark Matter from 570 Days of LHAASO Observations.
- Author
-
Cao Z, Aharonian F, An Q, Axikegu, Bai LX, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai JT, Cao Z, Chang J, Chang JF, Chen ES, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen Y, Cheng HL, Cheng N, Cheng YD, Cui SW, Cui XH, Cui YD, D'Ettorre Piazzoli B, Dai BZ, Dai HL, Dai ZG, Danzengluobu, Della Volpe D, Duan KK, Fan JH, Fan YZ, Fan ZX, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng XT, Feng YL, Gao B, Gao CD, Gao LQ, Gao Q, Gao W, Gao WK, Ge MM, Geng LS, Gong GH, Gou QB, Gu MH, Guo FL, Guo JG, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He SL, He XB, He Y, Heller M, Hor YK, Hou C, Hou X, Hu HB, Hu Q, Hu S, Hu SC, Hu XJ, Huang DH, Huang WH, Huang XT, Huang XY, Huang Y, Huang ZC, Ji XL, Jia HY, Jia K, Jiang K, Jiang ZJ, Jin M, Kang MM, Ke T, Kuleshov D, Levochkin K, Li BB, Li C, Li C, Li F, Li HB, Li HC, Li HY, Li J, Li J, Li J, Li K, Li WL, Li XR, Li X, Li X, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JS, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Long WJ, Lu R, Luo Q, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Masood A, Min Z, Mitthumsiri W, Nan YC, Ou ZW, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Qi YQ, Qiao BQ, Qin JJ, Ruffolo D, Sáiz A, Shao CY, Shao L, Shchegolev O, Sheng XD, Shi JY, Song HC, Stenkin YV, Stepanov V, Su Y, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang ZB, Tian WW, Wang BD, Wang C, Wang H, Wang HG, Wang JC, Wang JS, Wang LP, Wang LY, Wang R, Wang RN, Wang W, Wang XG, Wang XY, Wang Y, Wang YD, Wang YJ, Wang YP, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu XF, Wu YS, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao DX, Xiao G, Xin GG, Xin YL, Xing Y, Xiong Z, Xu DL, Xu RX, Xue L, Yan DH, Yan JZ, Yang CW, Yang FF, Yang HW, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Yue H, Zeng HD, Zeng TX, Zeng W, Zeng ZK, Zha M, Zhai XX, Zhang BB, Zhang F, Zhang HM, Zhang HY, Zhang JL, Zhang LX, Zhang L, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SB, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang YL, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zheng Y, Zhou B, Zhou H, Zhou JN, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, Zuo X, Ando S, Chianese M, Fiorillo DFG, Miele G, and Ng KCY
- Abstract
The kilometer square array (KM2A) of the large high altitude air shower observatory (LHAASO) aims at surveying the northern γ-ray sky at energies above 10 TeV with unprecedented sensitivity. γ-ray observations have long been one of the most powerful tools for dark matter searches, as, e.g., high-energy γ rays could be produced by the decays of heavy dark matter particles. In this Letter, we present the first dark matter analysis with LHAASO-KM2A, using the first 340 days of data from 1/2-KM2A and 230 days of data from 3/4-KM2A. Several regions of interest are used to search for a signal and account for the residual cosmic-ray background after γ/hadron separation. We find no excess of dark matter signals, and thus place some of the strongest γ-ray constraints on the lifetime of heavy dark matter particles with mass between 10^{5} and 10^{9} GeV. Our results with LHAASO are robust, and have important implications for dark matter interpretations of the diffuse astrophysical high-energy neutrino emission.
- Published
- 2022
- Full Text
- View/download PDF
4. Exploring Lorentz Invariance Violation from Ultrahigh-Energy γ Rays Observed by LHAASO.
- Author
-
Cao Z, Aharonian F, An Q, Axikegu, Bai LX, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai H, Cai JT, Cao Z, Chang J, Chang JF, Chen BM, Chen ES, Chen J, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen XL, Chen Y, Cheng N, Cheng YD, Cui SW, Cui XH, Cui YD, Piazzoli BD, Dai BZ, Dai HL, Dai ZG, Danzengluobu, Della Volpe D, Dong XJ, Duan KK, Fan JH, Fan YZ, Fan ZX, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng YL, Gao B, Gao CD, Gao LQ, Gao Q, Gao W, Ge MM, Geng LS, Gong GH, Gou QB, Gu MH, Guo FL, Guo JG, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He JC, He SL, He XB, He Y, Heller M, Hor YK, Hou C, Hou X, Hu HB, Hu S, Hu SC, Hu XJ, Huang DH, Huang QL, Huang WH, Huang XT, Huang XY, Huang ZC, Ji F, Ji XL, Jia HY, Jiang K, Jiang ZJ, Jin C, Ke T, Kuleshov D, Levochkin K, Li BB, Li C, Li C, Li F, Li HB, Li HC, Li HY, Li J, Li J, Li K, Li WL, Li XR, Li X, Li X, Li Y, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JS, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Liu ZX, Long WJ, Lu R, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Masood A, Min Z, Mitthumsiri W, Montaruli T, Nan YC, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Qi YQ, Qiao BQ, Qin JJ, Ruffolo D, Rulev V, Sáiz A, Shao L, Shchegolev O, Sheng XD, Shi JR, Song HC, Stenkin YV, Stepanov V, Su Y, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang ZB, Tian WW, Wang BD, Wang C, Wang H, Wang HG, Wang JC, Wang JS, Wang LP, Wang LY, Wang RN, Wang W, Wang W, Wang XG, Wang XJ, Wang XY, Wang Y, Wang YD, Wang YJ, Wang YP, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu WX, Wu XF, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao DX, Xiao G, Xiao HB, Xin GG, Xin YL, Xing Y, Xu DL, Xu RX, Xue L, Yan DH, Yan JZ, Yang CW, Yang FF, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Zeng HD, Zeng TX, Zeng W, Zeng ZK, Zha M, Zhai XX, Zhang BB, Zhang HM, Zhang HY, Zhang JL, Zhang JW, Zhang LX, Zhang L, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang YL, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zheng Y, Zhou B, Zhou H, Zhou JN, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, and Zuo X
- Abstract
Recently, the LHAASO Collaboration published the detection of 12 ultrahigh-energy γ-ray sources above 100 TeV, with the highest energy photon reaching 1.4 PeV. The first detection of PeV γ rays from astrophysical sources may provide a very sensitive probe of the effect of the Lorentz invariance violation (LIV), which results in decay of high-energy γ rays in the superluminal scenario and hence a sharp cutoff of the energy spectrum. Two highest energy sources are studied in this work. No signature of the existence of the LIV is found in their energy spectra, and the lower limits on the LIV energy scale are derived. Our results show that the first-order LIV energy scale should be higher than about 10^{5} times the Planck scale M_{Pl} and that the second-order LIV scale is >10^{-3}M_{Pl}. Both limits improve by at least one order of magnitude the previous results.
- Published
- 2022
- Full Text
- View/download PDF
5. Extended Very-High-Energy Gamma-Ray Emission Surrounding PSR J0622+3749 Observed by LHAASO-KM2A.
- Author
-
Aharonian F, An Q, Axikegu, Bai LX, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai H, Cai JT, Cao Z, Cao Z, Chang J, Chang JF, Chang XC, Chen BM, Chen J, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen XL, Chen Y, Cheng N, Cheng YD, Cui SW, Cui XH, Cui YD, Dai BZ, Dai HL, Dai ZG, Danzengluobu, Della Volpe D, D'Ettorre Piazzoli B, Dong XJ, Fan JH, Fan YZ, Fan ZX, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng YL, Gao B, Gao CD, Gao Q, Gao W, Ge MM, Geng LS, Gong GH, Gou QB, Gu MH, Guo JG, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He JC, He SL, He XB, He Y, Heller M, Hor YK, Hou C, Hou X, Hu HB, Hu S, Hu SC, Hu XJ, Huang DH, Huang QL, Huang WH, Huang XT, Huang ZC, Ji F, Ji XL, Jia HY, Jiang K, Jiang ZJ, Jin C, Kuleshov D, Levochkin K, Li BB, Li C, Li C, Li F, Li HB, Li HC, Li HY, Li J, Li K, Li WL, Li X, Li X, Li XR, Li Y, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JS, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu YN, Liu ZX, Long WJ, Lu R, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Masood A, Mitthumsiri W, Montaruli T, Nan YC, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Ruffolo D, Rulev V, Sáiz A, Shao L, Shchegolev O, Sheng XD, Shi JR, Song HC, Stenkin YV, Stepanov V, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang ZB, Tian WW, Wang BD, Wang C, Wang H, Wang HG, Wang JC, Wang JS, Wang LP, Wang LY, Wang RN, Wang W, Wang W, Wang XG, Wang XJ, Wang XY, Wang YD, Wang YJ, Wang YP, Wang Z, Wang Z, Wang ZH, Wang ZX, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu WX, Wu XF, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao G, Xiao HB, Xin GG, Xin YL, Xing Y, Xu DL, Xu RX, Xue L, Yan DH, Yang CW, Yang FF, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Zeng HD, Zeng TX, Zeng W, Zeng ZK, Zha M, Zhai XX, Zhang BB, Zhang HM, Zhang HY, Zhang JL, Zhang JW, Zhang L, Zhang L, Zhang LX, Zhang PF, Zhang PP, Zhang R, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang Y, Zhang Y, Zhang YF, Zhang YL, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zheng Y, Zhou B, Zhou H, Zhou JN, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, Zuo X, and Huang XY
- Abstract
We report the discovery of an extended very-high-energy (VHE) gamma-ray source around the location of the middle-aged (207.8 kyr) pulsar PSR J0622+3749 with the Large High-Altitude Air Shower Observatory (LHAASO). The source is detected with a significance of 8.2σ for E>25 TeV assuming a Gaussian template. The best-fit location is (right ascension, declination) =(95.47°±0.11°,37.92°±0.09°), and the extension is 0.40°±0.07°. The energy spectrum can be described by a power-law spectrum with an index of -2.92±0.17_{stat}±0.02_{sys}. No clear extended multiwavelength counterpart of the LHAASO source has been found from the radio to sub-TeV bands. The LHAASO observations are consistent with the scenario that VHE electrons escaped from the pulsar, diffused in the interstellar medium, and scattered the interstellar radiation field. If interpreted as the pulsar halo scenario, the diffusion coefficient, inferred for electrons with median energies of ∼160 TeV, is consistent with those obtained from the extended halos around Geminga and Monogem and much smaller than that derived from cosmic ray secondaries. The LHAASO discovery of this source thus likely enriches the class of so-called pulsar halos and confirms that high-energy particles generally diffuse very slowly in the disturbed medium around pulsars.
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.