1. Liquid Structure of Tantalum under Internal Negative Pressure
- Author
-
Y. Hironaka, Yusuke Seto, Ryosuke Kodama, Takuo Okuchi, Makina Yabashi, Tetsuya Sato, Masaharu Nishikino, Tadashi Togashi, Yoshinori Tange, Y. Inubushi, Keisuke Shigemori, T. Yabuuchi, Keiichi Sueda, K. Ishida, Norimasa Ozaki, K. Miyanishi, Y. Umeda, S. Ohmura, Kento Katagiri, Michel Koenig, Hirotaka Nakamura, Bruno Albertazzi, Osaka University [Osaka], Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Japan Synchrotron Radiation Research Institute [Hyogo] (JASRI), and University of Arkansas [Fayetteville]
- Subjects
[PHYS]Physics [physics] ,Diffraction ,Materials science ,Shock (fluid dynamics) ,Tension (physics) ,Tantalum ,General Physics and Astronomy ,chemistry.chemical_element ,Thermodynamics ,Nanosecond ,01 natural sciences ,Condensed Matter::Materials Science ,chemistry ,Cavitation ,0103 physical sciences ,Femtosecond ,Classical nucleation theory ,010306 general physics - Abstract
In situ femtosecond x-ray diffraction measurements and ab initio molecular dynamics simulations were performed to study the liquid structure of tantalum shock released from several hundred gigapascals (GPa) on the nanosecond timescale. The results show that the internal negative pressure applied to the liquid tantalum reached $\ensuremath{-}5.6\text{ }(0.8)\text{ }\text{ }\mathrm{GPa}$, suggesting the existence of a liquid-gas mixing state due to cavitation. This is the first direct evidence to prove the classical nucleation theory which predicts that liquids with high surface tension can support GPa regime tensile stress.
- Published
- 2021
- Full Text
- View/download PDF