1. Finite-Temperature Disordered Bosons in Two Dimensions
- Author
-
G. V. Shlyapnikov, V. P. Michal, G. Bertoli, Boris L. Altshuler, Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Delft University of Technology (TU Delft), Columbia University [New York], and Quantum Gases & Quantum Information (WZI, IoP, FNWI)
- Subjects
Physics ,Condensed Matter::Quantum Gases ,Condensed matter physics ,Bose gas ,[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas] ,General Physics and Astronomy ,FOS: Physical sciences ,Insulator (electricity) ,Disordered Systems and Neural Networks (cond-mat.dis-nn) ,Condensed Matter - Disordered Systems and Neural Networks ,01 natural sciences ,010305 fluids & plasmas ,Superfluidity ,Tricritical point ,Ultracold atom ,Quantum Gases (cond-mat.quant-gas) ,0103 physical sciences ,Thermodynamic limit ,010306 general physics ,Condensed Matter - Quantum Gases ,Phase diagram ,Boson - Abstract
We study phase transitions in a two dimensional weakly interacting Bose gas in a random potential at finite temperatures. We identify superfluid, normal fluid, and insulator phases and construct the phase diagram. At T=0 one has a tricritical point where the three phases coexist. The truncation of the energy distribution at the trap barrier, which is a generic phenomenon in cold atom systems, limits the growth of the localization length and in contrast to the thermodynamic limit the insulator phase is present at any temperature., Article (5 pages, 1 figure) and Supplemental Material (6 pages, 9 figures). v2: updated abstract, references, typos, plus small changes in text and supplemental material. v3: published version
- Published
- 2017
- Full Text
- View/download PDF