1. Competition between energy- and entropy-driven activation in glasses.
- Author
-
Carbone MR and Baity-Jesi M
- Abstract
In simplified models of glasses we clarify the existence of two different kinds of coexisting activated dynamics, with one of the two dominating over the other. One is the energy barrier hopping that is typically used to understand activation, and the other, which we call entropic activation, is driven by the scarcity of convenient directions in phase space. When entropic activation dominates, the height of the energy barriers is no longer the primary factor governing the system's slowdown. In our analysis, dominance of one mechanism over the other depends on temperature and the shape of the density of states. We also find that at low temperatures a phase transition between the two kinds of activation can occur. Our observations are used to provide a scenario that can harmonize the facilitation and thermodynamic pictures of the slowdown of glasses into a single description.
- Published
- 2022
- Full Text
- View/download PDF