1. Deep inelastic scattering of polarized electrons by polarizedHe3and the study of the neutron spin structure
- Author
-
W. Meyer, Sayed Rokni, Timothy Chupp, Y. Roblin, J. Morgenstern, C. C. Young, R. Prepost, H. Borel, E. W. Hughes, Z. M. Szalata, S. E. Rock, Timothy B. Smith, R. G. Arnold, H. Fonvieille, M. Woods, H. R. Band, F. S. Dietrich, P. E. Bosted, J. Fellbaum, F. Staley, H. Middleton, M. Spengos, Y. Terrien, Alan K. Thompson, L. M. Stuart, R. Erbacher, J. A. Dunne, T. Maruyama, J. Xu, Z. E. Meziani, Gilbert Shapiro, J. R. Johnson, N. R. Newbury, D. Kawall, G. G. Petratos, R. Holmes, G. H. Zapalac, J. Marroncle, P.L. Anthony, C. E. Keppel, James L. White, Vincent Breton, S. E. Kuhn, Gordon D. Cates, R. Pitthan, Paul A Souder, R. M. Lombard-Nelsen, and R. A. Gearhart
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Proton ,High density ,Neutron ,Electron ,Spin structure ,Nucleon ,Deep inelastic scattering - Abstract
The neutron longitudinal and transverse asymmetries ${A}_{1}^{n}$ and ${A}_{2}^{n}$ have been extracted from deep inelastic scattering of polarized electrons by a polarized $^{3}\mathrm{He}$ target at incident energies of 19.42, 22.66, and 25.51 GeV. The measurement allows for the determination of the neutron spin structure functions ${g}_{1}^{n}(x, {Q}^{2})$ and ${g}_{2}^{n}(x, {Q}^{2})$ over the range $0.03lxl0.6$ at an average ${Q}^{2}$ of 2 ${(\mathrm{G}\mathrm{e}\mathrm{V}/\mathit{c})}^{2}$. The data are used for the evaluation of the Ellis-Jaffe and Bjorken sum rules. The neutron spin structure function ${g}_{1}^{n}(x, {Q}^{2})$ is small and negative within the range of our measurement, yielding an integral $\ensuremath{\int}{0.03}^{0.6}{g}_{1}^{n}(x)\mathrm{dx}=\ensuremath{-}0.028\ifmmode\pm\else\textpm\fi{}0.006 (\mathrm{stat})\ifmmode\pm\else\textpm\fi{}0.006 (\mathrm{syst})$. Assuming Regge behavior at low $x$, we extract ${\ensuremath{\Gamma}}_{1}^{n}=\ensuremath{\int}{0}^{1}{g}_{1}^{n}(x)\mathrm{dx}=\ensuremath{-}0.031\ifmmode\pm\else\textpm\fi{}0.006 (\mathrm{stat})\ifmmode\pm\else\textpm\fi{}0.009 (\mathrm{syst})$. Combined with previous proton integral results from SLAC experiment E143, we find ${\ensuremath{\Gamma}}_{1}^{p}\ensuremath{-}{\ensuremath{\Gamma}}_{1}^{n}=0.160\ifmmode\pm\else\textpm\fi{}0.015$ in agreement with the Bjorken sum rule prediction ${\ensuremath{\Gamma}}_{1}^{p}\ensuremath{-}{\ensuremath{\Gamma}}_{1}^{n}=0.176\ifmmode\pm\else\textpm\fi{}0.008$ at a ${Q}^{2}$ value of 3 ${(\mathrm{G}\mathrm{e}\mathrm{V}/\mathit{c})}^{2}$ evaluated using ${\ensuremath{\alpha}}_{s}=0.32\ifmmode\pm\else\textpm\fi{}0.05$.
- Published
- 1996