1. Semantic segmentation with a sparse convolutional neural network for event reconstruction in MicroBooNE
- Author
-
MicroBooNE Collaboration, Abratenko, P., Alrashed, M., An, R., Anthony, J., Asaadi, J., Ashkenazi, A., Balasubramanian, S., Baller, B., Barnes, C., Barr, G., Basque, V., Bathe-Peters, L., Rodrigues, O. Benevides, Berkman, S., Bhanderi, A., Bhat, A., Bishai, M., Blake, A., Bolton, T., Camilleri, L., Caratelli, D., Terrazas, I. Caro, Fernandez, R. Castillo, Cavanna, F., Cerati, G., Chen, Y., Church, E., Cianci, D., Conrad, J. M., Convery, M., Cooper-Troendle, L., Crespo-Anadon, J. I., Del Tutto, M., Dennis, S. R., Devitt, D., Diurba, R., Dorrill, R., Duffy, K., Dytman, S., Eberly, B., Ereditato, A., Evans, J. J., Aguirre, G. A. Fiorentini, Fitzpatrick, R. S., Fleming, B. T., Foppiani, N., Franco, D., Furmanski, A. P., Garcia-Gamez, D., Gardiner, S., Ge, G., Gollapinni, S., Goodwin, O., Gramellini, E., Green, P., Greenlee, H., Gu, W., Guenette, R., Guzowski, P., Hagaman, L., Hall, E., Hamilton, P., Hen, O., Horton-Smith, G. A., Hourlier, A., Itay, R., James, C., de Vries, J. Jan, Ji, X., Jiang, L., Jo, J. H., Johnson, R. A., Jwa, Y. J., Kamp, N., Kaneshige, N., Karagiorgi, G., Ketchum, W., Kirby, B., Kirby, M., Kobilarcik, T., Kreslo, I., LaZur, R., Lepetic, I., Li, K., Li, Y., Littlejohn, B. R., Louis, W. C., Luo, X., Marchionni, A., Mariani, C., Marsden, D., Marshall, J., Martin-Albo, J., Caicedo, D. A. Martinez, Mason, K., Mastbaum, A., McConkey, N., Meddage, V., Mettler, T., Miller, K., Mills, J., Mistry, K., Mohayai, T., Mogan, A., Moon, J., Mooney, M., Moor, A. F., Moore, C. D., Lepin, L. Mora, Mousseau, J., Murphy, M., Naples, D., Navrer-Agasson, A., Neely, R. K., Nienaber, P., Nowak, J., Palamara, O., Paolone, V., Papadopoulou, A., Papavassiliou, V., Pate, S. F., Paudel, A., Pavlovic, Z., Piasetzky, E., Ponce-Pinto, I., Prince, S., Qian, X., Raaf, J. L., Radeka, V., Rafique, A., Reggiani-Guzzo, M., Ren, L., Rochester, L., Rondon, J. Rodriguez, Rogers, H. E., Rosenberg, M., Ross-Lonergan, M., Russell, B., Scanavini, G., Schmitz, D. W., Schukraft, A., Seligman, W., Shaevitz, M. H., Sharankova, R., Sinclair, J., Smith, A., Snider, E. L., Soderberg, M., Soldner-Rembold, S., Soleti, S. R., Spentzouris, P., Spitz, J., Stancari, M., John, J. St., Strauss, T., Sutton, K., Sword-Fehlberg, S., Szelc, A. M., Tagg, N., Tang, W., Terao, K., Thorpe, C., Toups, M., Tsai, Y. -T., Uchida, M. A., Usher, T., Van De Pontseele, W., Viren, B., Weber, M., Wei, H., Williams, Z., Wolbers, S., Wongjirad, T., Wospakrik, M., Wu, W., Yandel, E., Yang, T., Yarbrough, G., Yates, L. E., Zeller, G. P., Zennamo, J., and Zhang, C.
- Subjects
Physics ,Physics - Instrumentation and Detectors ,Time projection chamber ,Pixel ,010308 nuclear & particles physics ,business.industry ,FOS: Physical sciences ,Pattern recognition ,Instrumentation and Detectors (physics.ins-det) ,01 natural sciences ,Convolutional neural network ,High Energy Physics - Experiment ,Image (mathematics) ,High Energy Physics - Experiment (hep-ex) ,0103 physical sciences ,Key (cryptography) ,Segmentation ,Artificial intelligence ,010306 general physics ,Projection (set theory) ,business ,Event reconstruction - Abstract
We present the performance of a semantic segmentation network, SparseSSNet, that provides pixel-level classification of MicroBooNE data. The MicroBooNE experiment employs a liquid argon time projection chamber for the study of neutrino properties and interactions. SparseSSNet is a submanifold sparse convolutional neural network, which provides the initial machine learning based algorithm utilized in one of MicroBooNE's $\nu_e$-appearance oscillation analyses. The network is trained to categorize pixels into five classes, which are re-classified into two classes more relevant to the current analysis. The output of SparseSSNet is a key input in further analysis steps. This technique, used for the first time in liquid argon time projection chambers data and is an improvement compared to a previously used convolutional neural network, both in accuracy and computing resource utilization. The accuracy achieved on the test sample is $\geq 99\%$. For full neutrino interaction simulations, the time for processing one image is $\approx$ 0.5 sec, the memory usage is at 1 GB level, which allows utilization of most typical CPU worker machine.
- Published
- 2021
- Full Text
- View/download PDF