1. Stability of a trapped-atom clock on a chip
- Author
-
Vincent Dugrain, R. Szmuk, W. Maineult, Peter Rosenbusch, Jakob Reichel, Systèmes de Référence Temps Espace (SYRTE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Kastler Brossel (LKB (Jussieu)), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Kastler Brossel (LKB (Lhomond)), Université Pierre et Marie Curie - Paris 6 (UPMC)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Atomic Physics (physics.atom-ph) ,Atom chip ,FOS: Physical sciences ,Metrology ,7. Clean energy ,Physics - Atomic Physics ,67.85.-d ,Computer Science::Hardware Architecture ,Ultracold atom ,Time and frequency ,Physics::Atomic and Molecular Clusters ,Physics::Atomic Physics ,06.30.Ft ,[PHYS]Physics [physics] ,Condensed Matter::Quantum Gases ,Physics ,Quantum Physics ,37.10.Gh ,Ultracold gases trapped gases ,Chip ,Atomic and Molecular Physics, and Optics ,Atomic clock ,Atom traps and guides ,06.20.-f ,Atomic physics ,Quantum Physics (quant-ph) ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
We present a compact atomic clock interrogating ultracold 87Rb magnetically trapped on an atom chip. Very long coherence times sustained by spin self-rephasing allow us to interrogate the atomic transition with 85% contrast at 5 s Ramsey time. The clock exhibits a fractional frequency stability of $5.8\times 10^{-13}$ at 1 s and is likely to integrate into the $1\times10^{-15}$ range in less than a day. A detailed analysis of 7 noise sources explains the measured frequency stability. Fluctuations in the atom temperature (0.4 nK shot-to-shot) and in the offset magnetic field ($5\times10^{-6}$ relative fluctuations shot-to-shot) are the main noise sources together with the local oscillator, which is degraded by the 30% duty cycle. The analysis suggests technical improvements to be implemented in a future second generation set-up. The results demonstrate the remarkable degree of technical control that can be reached in an atom chip experiment., 12 pages, 11 figures
- Published
- 2015
- Full Text
- View/download PDF