Net photosynthetic rate (PN), stomatal conductance (gS), transpiration rate (E), intercellular CO2 concentration (Ci), leaf water potential (Ψw), leaf area, chlorophyll (Chl) content, and the activities of photosynthetic carbon reduction cycle (PCR) enzymes in two mulberry (Morus alba L.) cultivars (drought tolerant Anantha and drought sensitive M-5) were studied during water stress and recovery. During water stress, PN, gS, and E declined whereas Ci increased. PN, gS, and E were less affected in Anantha than in M-5, which indicates tolerance nature of Anantha over M-5. Activities of ribulose-5-phosphate kinase, NAD- and NADP-glyceraldehyde-3-phosphate dehydrogenases, and 3-phosphoglycerate kinase decreased with increasing stress in both the cultivars. The enzyme activities less affected in tolerant (Anantha) than in sensitive cultivar (M-5) were restored after re-watering to almost initial values in both the cultivars. Re-watering of the plants led to an almost complete recovery of PN, E, and gS, indicating that a short-term stress brings about reversible effect in these two cultivars of mulberry.