1. Hydroxyectoine protects Mn-depleted photosystem II against photoinhibition acting as a source of electrons.
- Author
-
Yanykin, D. V., Malferrari, M., Rapino, S., Venturoli, G., Semenov, A. Yu, and Mamedov, M. D.
- Abstract
In the present study, we have investigated the effect of hydroxyectoine (Ect-OH), a heterocyclic amino acid, on oxygen evolution in photosystem II (PS II) membrane fragments and on photoinhibition of Mn-depleted PS II (apo-WOC-PS II) preparations. The degree of photoinhibition of apo-WOC-PS II preparations was estimated by the loss of the capability of exogenous electron donor (sodium ascorbate) to restore the amplitude of light-induced changes of chlorophyll fluorescence yield (∆F). It was found that Ect-OH (i) stimulates the oxygen-evolving activity of PS II, (ii) accelerates the electron transfer from exogenous electron donors (K
4 [Fe(CN)6 ], DPC, TMPD, Fe2+ , and Mn2+ ) to the reaction center of apo-WOC-PS II, (iii) enhances the protective effect of exogenous electron donors against donor-side photoinhibition of apo-WOC-PS II preparations. It is assumed that Ect-OH can serve as an artificial electron donor for apo-WOC-PS II, which does not directly interact with either the donor or acceptor side of the reaction center. We suggest that the protein conformation in the presence of Ect-OH, which affects the extent of hydration, becomes favorable for accepting electrons from exogenous donors. To our knowledge, this is the first study dealing with redox activity of Ect-OH towards photosynthetic pigment–protein complexes. [ABSTRACT FROM AUTHOR]- Published
- 2019
- Full Text
- View/download PDF