1. BDCOA: Wavefront Aberration Compensation Using Improved Swarm Intelligence for FSO Communication.
- Author
-
Shankarnahalli Krishnegowda, Suhas, Ganesh, Arvind Kumar, Bidare Divakarachari, Parameshachari, Shankarappa, Veena Yadav, and Gollara Siddappa, Nijaguna
- Subjects
FREE-space optical technology ,OPTIMIZATION algorithms ,TELECOMMUNICATION ,BIT error rate ,ADAPTIVE optics ,ATMOSPHERIC turbulence - Abstract
Free Space Optical (FSO) communication is extensively utilized in the telecommunication industry for both ground and space wireless links, as well as last-mile applications, as a result of its lesser Bit Error Rate (BER), free spectrum, and easy relocation. However, atmospheric turbulence, also known as Wavefront Aberration (WA), is considered a serious issue because it causes higher BER and affects coupling efficiency. In order to address this issue, a Sensor-Less Adaptive Optics (SLAO) system is developed for FSO to enhance performance. In this research, the compensation of WA in SLAO is obtained by proposing the Brownian motion and Directional mutation scheme-based Coati Optimization Algorithm, BDCOA. Here, the BDCOA is developed to search for an optimum control signal value of actuators in Deformable Mirror (DM). The incorporated Brownian motion and directional mutation are used to avoid the local optimum issue and enhance search space efficiency while searching for the control signal. Therefore, the dynamic control signal optimization for DM using BDCOA helps to enhance the coupling efficiency. Thus, the WAs are compensated for and optical signal concentration is enhanced in FSO. The metrics used for analyzing the BDCOA are Root Mean Square (RMS), BER, coupling efficiency, and Strehl Ratio (SR). The existing methods, such as Simulated Annealing (SA) and Stochastic Parallel Gradient Descent (SPGD), Advanced Multi-Feedback SPGD (AMFSPGD), and Oppositional-Breeding Artificial Fish Swarm (OBAFS), are used for evaluating the performance of BDCOA. The RMS of BDCOA for iterations 500 is 0.12, which is less than that of the SA-SPGD and OBAFS. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF