1. Species relationships in the extremes and their influence on community stability.
- Author
-
Ghosh S, Cottingham KL, and Reuman DC
- Subjects
- Ecology, Population Dynamics, Biodiversity, Biomass, Ecosystem, Periodicity
- Abstract
Synchrony among population fluctuations of multiple coexisting species has a major impact on community stability, i.e. on the relative temporal constancy of aggregate properties such as total community biomass. However, synchrony and its impacts are usually measured using covariance methods, which do not account for whether species abundances may be more correlated when species are relatively common than when they are scarce, or vice versa. Recent work showed that species commonly exhibit such 'asymmetric tail associations'. We here consider the influence of asymmetric tail associations on community stability. We develop a 'skewness ratio' which quantifies how much species relationships and tail associations modify stability. The skewness ratio complements the classic variance ratio and related metrics. Using multi-decadal grassland datasets, we show that accounting for tail associations gives new viewpoints on synchrony and stability; e.g. species associations can alter community stability differentially for community crashes or explosions to high values, a fact not previously detectable. Species associations can mitigate explosions of community abundance to high values, increasing one aspect of stability, while simultaneously exacerbating crashes to low values, decreasing another aspect of stability; or vice versa. Our work initiates a new, more flexible paradigm for exploring species relationships and community stability. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.
- Published
- 2021
- Full Text
- View/download PDF