1. Pharmacokinetic/Pharmacodynamic Model of Neutropenia in Real-Life Palbociclib-Treated Patients
- Author
-
Alexandre Le Marouille, Emma Petit, Courèche Kaderbhaï, Isabelle Desmoulins, Audrey Hennequin, Didier Mayeur, Jean-David Fumet, Sylvain Ladoire, Zoé Tharin, Siavoshe Ayati, Silvia Ilie, Bernard Royer, and Antonin Schmitt
- Subjects
palbociclib ,neutropenia ,pharmacokinetic/pharmacodynamic ,Pharmacy and materia medica ,RS1-441 - Abstract
Palbociclib is an oral CDK4/6 inhibitor indicated in HR+/HER2- advanced or metastatic breast cancer in combination with hormonotherapy. Its main toxicity is neutropenia. The aim of our study was to describe the kinetics of circulating neutrophils from real-life palbociclib-treated patients. A population pharmacokinetic (popPK) model was first constructed to describe palbociclib pharmacokinetic (PK). Individual PK parameters obtained were then used in the pharmacokinetic/pharmacodynamic (PK/PD) model to depict the relation between palbociclib concentrations and absolute neutrophil counts (ANC). The models were built with a population of 143 patients. Palbociclib samples were routinely collected during therapeutic drug monitoring, whereas ANC were retrospectively retrieved from the patient files. The optimal popPK model was a mono-compartmental model with a first-order absorption constant of 0.187 h−1 and an apparent clearance Cl/F of 57.09 L (32.8% of inter individuality variability (IIV)). The apparent volume of distribution (1580 L) and the lag-time (Tlag: 0.658 h) were fixed to values from the literature. An increase in creatinine clearance and a decrease in alkaline phosphatase led to an increase in palbociclib Cl/F. To describe ANC kinetics during treatment, Friberg’s PK/PD model, with linear drug effect, was used. Parameters estimated were Base (2.92 G/L; 29.6% IIV), Slope (0.0011 L/µg; 28.8% IIV), Mean Transit Time (MTT; 5.29 days; 17.9% IIV) and γ (0.102). The only significant covariate was age on the initial ANC (Base), with lower ANC in younger patients. PK/PD model-based simulations show that the higher the estimated CressSS (trough concentration at steady state), the higher the risk of developing neutropenia. In order to present a risk lower than 20% to developing a grade 4 neutropenia, the patient should show an estimated CressSS lower than 100 µg/L.
- Published
- 2021
- Full Text
- View/download PDF