1. Impact of Induced Syncytia Formation on the Oncolytic Potential of Myxoma Virus
- Author
-
Chase Burton, Eric Bartee, and Mee Y Bartee
- Subjects
0303 health sciences ,Syncytium ,Tumor microenvironment ,viruses ,Myxoma virus ,Biology ,biology.organism_classification ,Fusion protein ,Virology ,In vitro ,3. Good health ,Oncolytic virus ,03 medical and health sciences ,0302 clinical medicine ,Lytic cycle ,In vivo ,030220 oncology & carcinogenesis ,030304 developmental biology - Abstract
Introduction Cancer has become one of the most critical health issues of modern times. To overcome the ineffectiveness of current treatment options, research is being done to explore new therapeutic modalities. One such novel treatment is oncolytic virotherapy (OV) which uses tumor tropic viruses to specifically target and kill malignant cells. While OV has shown significant promise in recent clinical trials, the therapeutic use of viruses poses a number of unique challenges. In particular, obtaining effective viral spread throughout the tumor microenvironment remains problematic. Previous work has suggested this can be overcome by forcing oncolytic viruses to induce syncytia formation. Methods In the current work, we generated a series of recombinant myxoma viruses expressing exogenous fusion proteins from other viral genomes and examined their therapeutic potential in vitro and in vivo. Results Similar to previous studies, we observed that the expression of these fusion proteins during myxoma infection induced the formation of multinucleated syncytia which increased viral spread and lytic potential compared to non-fusogenic controls. Contrary to expectations, however, the treatment of established tumors with these viruses resulted in decreased therapeutic efficacy which corresponded with reduced viral persistence. Discussion These findings indicate that enhanced viral spread caused by syncytia formation can actually reduce the efficacy of OV and supports a number of previous works suggesting that the in vitro properties of viruses frequently fail to predict their in vivo efficacy.
- Published
- 2019
- Full Text
- View/download PDF