Maria Rosa Lidonnici, G Iotti, Francesca Corradini, C Rosafio, Michela Bardini, Mattia Ronchetti, Francesco Blasi, Giovanna Ferrari-Amorotti, Robert V. Martinez, Y Zhang, Bruno Calabretta, Iotti, G, Ferrari Amorotti, G, Rosafio, C, Corradini, F, Lidonnici, M, Ronchetti, M, Bardini, M, Zhang, Y, Martinez, R, Blasi, F, and Calabretta, B
Transformation of hematopoietic cells by the BCR/ABL oncogene is caused by perturbation of signal transduction pathways leading to altered patterns of gene expression and activity. By oligonucleotide microarray hybridization of polysomal RNA of untreated and STI571-treated 32D-BCR/ABL cells, we identified the beta-chemokine CCL9 as a gene regulated by BCR/ABL in a tyrosine kinase-dependent manner. BCR/ABL repressed CCL9 expression at the transcriptional level by mechanisms involving suppression of p38 MAP kinase, and modulation of the activity of CDP/cut and C/EBPalpha, two transcription regulators of myeloid differentiation. However, repression of C/EBP-dependent transcription did not prevent the induction of CCL9 expression by STI571, suggesting that C/EBPalpha is involved in maintaining rather than in inducing CCL9 expression. Restoration of CCL9 expression in 32D-BCR/ABL cells had no effect on the in vitro proliferation of these cells, but reduced their leukemogenic potential in vivo, possibly by recruitment of CD3-positive immune cells. Together, these findings suggest that downregulation of chemokine expression may be involved in BCR/ABL-dependent leukemogenesis by altering the relationship between transformed cells and the microenvironment.