1. Reciprocal facilitation between ants and small mammals in tidal marshes.
- Author
-
Canepuccia, Alejandro D., Hidalgo, Fernando J., Fanjul, Eugenia, and Iribarne, Oscar O.
- Subjects
- *
SALT marshes , *FIRE ants , *ANTS , *BIOTIC communities , *COEXISTENCE of species , *PHRAGMITES , *PLANT growth - Abstract
The role of facilitation in shaping natural communities has primarily been studied in the context of plant assemblages, while its relevance for mobile animals remains less understood. Our study investigates whether reciprocal interspecific facilitation may exist between fire ants (Solenopsis richteri) and cavies (Cavia aperea), two mobile animals, in the SW Atlantic coast brackish marshes. Field samples showed a spatial association between ant mounds and cavies, and that ants prefer to use cavy runways for movement within the marsh. Through experiments involving transplanting the dominant plant, cordgrass (Spartina densiflora), and manipulating cavy presence in areas with and without ant mounds, we observed that cavies forage extensively (and defecate more) near ant mounds. The ants actively remove cavy droppings in their mound vicinity. These ant activities and interactions with cavy droppings led to reduced moisture and organic content while increasing nitrate and phosphate levels in marsh sediment. Consequently, this enhanced plant growth, indirectly facilitating the cavies, which preferred consuming vegetation near ant mounds. These cascading indirect effects persisted over time; even four months after cavies left the marshes, transplanted plants near ant mounds remained larger and exhibited more leaf senescence when exposed to cavy herbivory. Therefore, the networks of positive interactions appear to generate simultaneous selection among species (populations), promoting coexistence within the community. Although complex, these reciprocal facilitative effects among mobile animals may be more common than currently believed and should be further studied to gain a better understanding of the underlying mechanisms driving species coexistence in natural communities. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF