Irradiation with ultraviolet light was used to induce covalent linkage between hnRNA and its associated proteins in intact HeLa cells, late after infection with adenovirus type 2. Covalently linked hnRNA-protein complexes, containing polyadenylated adenoviral RNA, were isolated and their protein moiety characterized. Host 42,000 Mr hnRNP proteins proved to be the major proteins crosslinked to viral hnRNA. To investigate their possible involvement in RNA processing, the localization of these cross-linked polypeptides on adenoviral late transcripts was determined. Sequences of RNA around the attachment sites of the protein were isolated. After in vitro labeling they were hybridized to Southern blots of adeno DNA fragments. The hybridization patterns revealed that the 42,000 Mr polypeptides can be linked to adenoviral transcripts over the entire length of the RNA, corresponding to 16.2-91.5 m.u. of the viral genome. Fine mapping within the Hind III B region (16.8-31.5 m.u.) established, however, that the localization of the cross-linked polypeptides was not random in all parts of the transcript. Sequences around the third leader and the 3' part of the i-leader were overrepresented, whereas the regions encoding VA I and VA II RNA and the late region 1 mRNA bodies were underrepresented in the cross-linked RNA. Using genomic DNA fragments and a cDNA clone containing the tripartite leader it appeared that leader and intervening sequences were represented about equally in cross-linked RNA fragments. Although these results do not support the notion that introns or exons are specifically interacting with one RNP protein, they demonstrate that the 42,000 hnRNP proteins are non randomly positioned on the RNA sequence.