1. Transport barrier in 5D gyrokinetic flux-driven simulations
- Author
-
G. Lo-Cascio, E. Gravier, T. Réveillé, M. Lesur, Y. Sarazin, X. Garbet, L. Vermare, K. Lim, A. Guillevic, V. Grandgirard, Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), CEA Cadarache, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de Physique des Plasmas (LPP), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), CMCS-EPFL (CMCS-EPFL), Ecole Polytechnique Fédérale de Lausanne (EPFL), ANR-19-CE30-0005,GRANUL,GRANULation de l'espace des phases dans les plasmas de fusion(2019), European Project: 101052200,Implementation of activities described in the Roadmap to Fusion during Horizon Europe through a joint programme of the members of the EUROfusion consortium,EUROfusion, and European Project: 824158,H2020-EU.1.4. - EXCELLENT SCIENCE - Research Infrastructures ,EoCoE-II(2019)
- Subjects
kelvin-helmholtz instability ,fusion ,Nuclear and High Energy Physics ,fluctuations ,turbulence ,E x B shear ,discharges ,shear ,Condensed Matter Physics ,gyrokinetic ,zonal flows ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,confinement ,simulations ,radial electric-field ,transport barrier ,physics ,plasma - Abstract
Two ways for producing a transport barrier through strong shear of the E × B poloidal flow have been investigated using GYSELA gyrokinetic simulations in a flux-driven regime. The first one uses an external poloidal momentum (i.e. vorticity) source that locally polarizes the plasma, and the second one enforces a locally steep density profile that also stabilizes the ion temperature gradient (ITG) instability modes linearly. Both cases show a very low local turbulent heat diffusivity coefficient χ T turb and a slight increase in core pressure when a threshold of ω E × B ≈ γ ¯ lin (respectively the E × B shear rate and average linear growth rate of ITG) is reached, validating previous numerical results. This pressure increase and χ T turb quench are the signs of a transport barrier formation. This behaviour is the result of a reduced turbulence intensity which strongly correlates with the shearing of turbulent structures as evidenced by a reduction of the auto-correlation length of potential fluctuations as well as an intensity reduction of the k θ spectrum. Moreover, a small shift towards smaller poloidal wavenumber is observed in the vorticity source region which could be linked to a tilt of the turbulent structures in the poloidal direction.
- Published
- 2022
- Full Text
- View/download PDF