1. Glial cell line-derived neurotrophic factor attenuates the locomotor hypofunction and striatonigral neurochemical deficits induced by chronic systemic administration of the mitochondrial toxin 3-nitropropionic acid.
- Author
-
Araujo DM and Hilt DC
- Subjects
- Animals, Autoradiography, Choline O-Acetyltransferase metabolism, Female, Glial Cell Line-Derived Neurotrophic Factor, Injections, Intraventricular, Mitochondria drug effects, Mitochondria metabolism, Neostriatum cytology, Neostriatum metabolism, Nerve Tissue Proteins administration & dosage, Neuropeptides pharmacology, Neuroprotective Agents administration & dosage, Nipecotic Acids metabolism, Nitro Compounds, Rats, Rats, Wistar, Receptors, Dopamine D1 drug effects, Receptors, Dopamine D1 metabolism, Receptors, Dopamine D2 drug effects, Receptors, Dopamine D2 metabolism, Receptors, GABA drug effects, Receptors, GABA metabolism, Substantia Nigra cytology, Substantia Nigra metabolism, Tiagabine, Motor Activity drug effects, Neostriatum physiology, Nerve Growth Factors, Nerve Tissue Proteins pharmacology, Neuroprotective Agents pharmacology, Neurotoxins toxicity, Propionates toxicity, Substantia Nigra physiology
- Abstract
The present study investigated whether glial cell line-derived neurotrophic factor prevents the progressive striatal degeneration induced by chronic systemic administration of the mitochondrial toxin, 3-nitropropionic acid. In addition, the effects of delayed treatment with glial cell line-derived neurotrophic factor on toxin-induced behavioural and neurochemical deficits were determined. Locomotor activity in rats infused with 3-nitropropionic acid (15 mg/kg/day, for four weeks) via subcutaneous osmotic minipumps was considerably reduced compared to control rats. However, in rats given a single intracerebroventricular injection of 100 micrograms of glial cell line-derived neurotrophic factor, locomotor activity was significantly higher than in rats injected with the vehicle, an effect that was most pronounced at the onset of toxin infusion. Consistent with a protective or restorative effect in this model of striatal neurodegeneration, toxin-induced deficits in markers of neurotransmitter function were attenuated by glial cell line-derived neurotrophic factor. Thus, [3H]GABA uptake and [3H]tiagabine/GABA uptake sites in striatal target tissues (globus pallidus and substantia nigra), as well as [3H]choline uptake, choline acetyltransferase activity and dopamine receptor binding in the striatum were decreased by the toxin and restored to varying degrees by glial cell line-derived neurotrophic factor administration. As with locomotor abnormalities, effects on neurochemical deficits were most prominent when glial cell line-derived neurotrophic factor was given at the start of toxin infusion, but remained significantly higher than in the vehicle-injected rats when given up to two weeks after. Substance P, dynorphin A and [Met]enkephalin levels in the striatal target tissues also were reduced by 3-nitropropionic acid. The results show that glial cell line-derived neurotrophic factor protects striatal neurons from slow excitotoxic cell death resulting from energy deprivation, secondary to mitochondrial dysfunction. Moreover, they suggest that glial cell line-derived neurotrophic factor may be a viable therapeutic agent for slowly progressive central nervous system disorders, like Huntington's disease, that may be caused by secondary excitotoxicity resulting from abnormal energy utilization.
- Published
- 1998
- Full Text
- View/download PDF