3 results on '"Mizuiri, D."'
Search Results
2. Cross-modal plasticity in adult single-sided deafness revealed by alpha band resting-state functional connectivity.
- Author
-
Shang Y, Hinkley LB, Cai C, Mizuiri D, Cheung SW, and Nagarajan SS
- Subjects
- Adult, Female, Gyrus Cinguli physiopathology, Humans, Magnetic Resonance Imaging methods, Magnetoencephalography methods, Male, Memory, Short-Term physiology, Neuronal Plasticity physiology, Auditory Cortex physiopathology, Brain physiopathology, Deafness physiopathology, Neural Pathways physiopathology
- Abstract
Single-sided deafness (SSD) or profound unilateral hearing loss is the condition where the transfer of acoustic information to the brain is restricted to one ear. SSD impairment is most evident under adverse acoustic environments with overlapping interference, which burdens cognitive resources. It is known that bilateral deafness induces cross-modal brain plasticity within visual cortical areas. Here we investigate whether similar cross-modal plasticity is observed in adult-onset SSD. In SSD patients (n = 29) and matched controls (n = 29) we estimated voxel level resting-state power and functional connectivity in the alpha band (8-12 Hz) from magnetoencephalography (MEG) data. We examined both global functional connectivity (mean functional connectivity of each voxel with the rest of the brain), and seeded functional connectivity of primary auditory cortices (A1), primary visual cortices (V1) and posterior cingulate cortex (PCC) of the default mode network (DMN). Power reduction was observed in left auditory cortex. Global functional connectivity showed reduction in frontal cortices and enhancement in visual cortex. Seeded functional connectivity of auditory cortices showed reduction in temporal, frontal and occipital regions, and enhancement in parietal cortex. Interestingly, seeded functional connectivity of visual cortices showed enhancement in visual cortices, inferior parietal lobe, post-central gyrus, and the precuneus, and reduction in auditory cortex. Seeded functional connectivity of PCC showed reduction in frontal cortical regions that are part of the DMN, attention, and working memory networks. Adult-onset SSD exhibited widespread cross-modal brain plasticity involving alterations in auditory, visual, attention, working memory and default mode networks., Competing Interests: Declaration of competing interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
3. Language mapping with navigated repetitive TMS: proof of technique and validation.
- Author
-
Tarapore PE, Findlay AM, Honma SM, Mizuiri D, Houde JF, Berger MS, and Nagarajan SS
- Subjects
- Adult, Aged, Brain Neoplasms complications, Cerebral Cortex physiopathology, Female, Humans, Language, Magnetic Resonance Imaging, Magnetoencephalography, Male, Middle Aged, Signal Processing, Computer-Assisted, Speech Disorders etiology, Speech Disorders physiopathology, Young Adult, Brain Mapping methods, Neural Pathways physiopathology, Speech physiology, Transcranial Magnetic Stimulation methods
- Abstract
Objective: Lesion-based mapping of speech pathways has been possible only during invasive neurosurgical procedures using direct cortical stimulation (DCS). However, navigated transcranial magnetic stimulation (nTMS) may allow for lesion-based interrogation of language pathways noninvasively. Although not lesion-based, magnetoencephalographic imaging (MEGI) is another noninvasive modality for language mapping. In this study, we compare the accuracy of nTMS and MEGI with DCS., Methods: Subjects with lesions around cortical language areas underwent preoperative nTMS and MEGI for language mapping. nTMS maps were generated using a repetitive TMS protocol to deliver trains of stimulations during a picture naming task. MEGI activation maps were derived from adaptive spatial filtering of beta-band power decreases prior to overt speech during picture naming and verb generation tasks. The subjects subsequently underwent awake language mapping via intraoperative DCS. The language maps obtained from each of the 3 modalities were recorded and compared., Results: nTMS and MEGI were performed on 12 subjects. nTMS yielded 21 positive language disruption sites (11 speech arrest, 5 anomia, and 5 other) while DCS yielded 10 positive sites (2 speech arrest, 5 anomia, and 3 other). MEGI isolated 32 sites of peak activation with language tasks. Positive language sites were most commonly found in the pars opercularis for all three modalities. In 9 instances the positive DCS site corresponded to a positive nTMS site, while in 1 instance it did not. In 4 instances, a positive nTMS site corresponded to a negative DCS site, while 169 instances of negative nTMS and DCS were recorded. The sensitivity of nTMS was therefore 90%, specificity was 98%, the positive predictive value was 69% and the negative predictive value was 99% as compared with intraoperative DCS. MEGI language sites for verb generation and object naming correlated with nTMS sites in 5 subjects, and with DCS sites in 2 subjects., Conclusion: Maps of language function generated with nTMS correlate well with those generated by DCS. Negative nTMS mapping also correlates with negative DCS mapping. In our study, MEGI lacks the same level of correlation with intraoperative mapping; nevertheless it provides useful adjunct information in some cases. nTMS may offer a lesion-based method for noninvasively interrogating language pathways and be valuable in managing patients with peri-eloquent lesions., (Copyright © 2013 Elsevier Inc. All rights reserved.)
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.