1. Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation.
- Author
-
Huo, Yanwu, Nam, Ki Hyun, Ding, Fang, Lee, Heejin, Wu, Lijie, Xiao, Yibei, Farchione, M Daniel, Zhou, Sharleen, Rajashankar, Kanagalaghatta, Kurinov, Igor, Zhang, Rongguang, and Ke, Ailong
- Subjects
- *
CRISPRS , *DNA , *PLASMIDS , *CRYSTAL structure , *PROTEINS - Abstract
CRISPR drives prokaryotic adaptation to invasive nucleic acids such as phages and plasmids, using an RNA-mediated interference mechanism. Interference in type I CRISPR-Cas systems requires a targeting Cascade complex and a degradation machine, Cas3, which contains both nuclease and helicase activities. Here we report the crystal structures of Thermobifida fusca Cas3 bound to single-stranded (ss) DNA substrate and show that it is an obligate 3′-to-5′ ssDNase that preferentially accepts substrate directly from the helicase moiety. Conserved residues in the HD-type nuclease coordinate two irons for ssDNA cleavage. We demonstrate ATP coordination and conformational flexibility of the SF2-type helicase domain. Cas3 is specifically guided toward Cascade-bound target DNA by a PAM sequence, through physical interactions with both the nontarget substrate strand and the CasA protein. The sequence of recognition events ensures well-controlled DNA targeting and degradation of foreign DNA by Cascade and Cas3. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF