1. Genome-wide bidirectional CRISPR screens identify mucins as host factors modulating SARS-CoV-2 infection
- Author
-
Scott B. Biering, Sylvia A. Sarnik, Eleanor Wang, James R. Zengel, Sarah R. Leist, Alexandra Schäfer, Varun Sathyan, Padraig Hawkins, Kenichi Okuda, Cyrus Tau, Aditya R. Jangid, Connor V. Duffy, Jin Wei, Rodney C. Gilmore, Mia Madel Alfajaro, Madison S. Strine, Xammy Nguyenla, Erik Van Dis, Carmelle Catamura, Livia H. Yamashiro, Julia A. Belk, Adam Begeman, Jessica C. Stark, D. Judy Shon, Douglas M. Fox, Shahrzad Ezzatpour, Emily Huang, Nico Olegario, Arjun Rustagi, Allison S. Volmer, Alessandra Livraghi-Butrico, Eddie Wehri, Richard R. Behringer, Dong-Joo Cheon, Julia Schaletzky, Hector C. Aguilar, Andreas S. Puschnik, Brian Button, Benjamin A. Pinsky, Catherine A. Blish, Ralph S. Baric, Wanda K. O’Neal, Carolyn R. Bertozzi, Craig B. Wilen, Richard C. Boucher, Jan E. Carette, Sarah A. Stanley, Eva Harris, Silvana Konermann, and Patrick D. Hsu
- Subjects
Medical and Health Sciences ,Epigenesis, Genetic ,Vaccine Related ,Mice ,Rare Diseases ,Genetic ,Clinical Research ,Biodefense ,Genetics ,2.2 Factors relating to the physical environment ,2.1 Biological and endogenous factors ,Animals ,Humans ,Clustered Regularly Interspaced Short Palindromic Repeats ,Aetiology ,Acute Respiratory Distress Syndrome ,Lung ,SARS-CoV-2 ,Prevention ,Mucins ,COVID-19 ,Pneumonia ,Biological Sciences ,Infectious Diseases ,Emerging Infectious Diseases ,Good Health and Well Being ,Pneumonia & Influenza ,Respiratory ,Infection ,Epigenesis ,Developmental Biology - Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a range of symptoms in infected individuals, from mild respiratory illness to acute respiratory distress syndrome. A systematic understanding of host factors influencing viral infection is critical to elucidate SARS-CoV-2–host interactions and the progression of Coronavirus disease 2019 (COVID-19). Here, we conducted genome-wide CRISPR knockout and activation screens in human lung epithelial cells with endogenous expression of the SARS-CoV-2 entry factors ACE2 and TMPRSS2. We uncovered proviral and antiviral factors across highly interconnected host pathways, including clathrin transport, inflammatory signaling, cell-cycle regulation, and transcriptional and epigenetic regulation. We further identified mucins, a family of high molecular weight glycoproteins, as a prominent viral restriction network that inhibits SARS-CoV-2 infection in vitro and in murine models. These mucins also inhibit infection of diverse respiratory viruses. This functional landscape of SARS-CoV-2 host factors provides a physiologically relevant starting point for new host-directed therapeutics and highlights airway mucins as a host defense mechanism.
- Published
- 2021