1. Reversible manipulation of the magnetic state in SrRuO3 through electric-field controlled proton evolution.
- Author
-
Li, Zhuolu, Li, Zhuolu, Shen, Shengchun, Tian, Zijun, Hwangbo, Kyle, Wang, Meng, Wang, Yujia, Bartram, F Michael, He, Liqun, Lyu, Yingjie, Dong, Yongqi, Wan, Gang, Li, Haobo, Lu, Nianpeng, Zang, Jiadong, Zhou, Hua, Arenholz, Elke, He, Qing, Yang, Luyi, Luo, Weidong, Yu, Pu, Li, Zhuolu, Li, Zhuolu, Shen, Shengchun, Tian, Zijun, Hwangbo, Kyle, Wang, Meng, Wang, Yujia, Bartram, F Michael, He, Liqun, Lyu, Yingjie, Dong, Yongqi, Wan, Gang, Li, Haobo, Lu, Nianpeng, Zang, Jiadong, Zhou, Hua, Arenholz, Elke, He, Qing, Yang, Luyi, Luo, Weidong, and Yu, Pu
- Abstract
Ionic substitution forms an essential pathway to manipulate the structural phase, carrier density and crystalline symmetry of materials via ion-electron-lattice coupling, leading to a rich spectrum of electronic states in strongly correlated systems. Using the ferromagnetic metal SrRuO3 as a model system, we demonstrate an efficient and reversible control of both structural and electronic phase transformations through the electric-field controlled proton evolution with ionic liquid gating. The insertion of protons results in a large structural expansion and increased carrier density, leading to an exotic ferromagnetic to paramagnetic phase transition. Importantly, we reveal a novel protonated compound of HSrRuO3 with paramagnetic metallic as ground state. We observe a topological Hall effect at the boundary of the phase transition due to the proton concentration gradient across the film-depth. We envision that electric-field controlled protonation opens up a pathway to explore novel electronic states and material functionalities in protonated material systems.
- Published
- 2020