1. Visualizing the interfacial-layer-based epitaxial growth process toward organic core-shell architectures.
- Author
-
Zhuo MP, Wei X, Li YY, Shi YL, He GP, Su H, Zhang KQ, Guan JP, Wang XD, Wu Y, and Liao LS
- Abstract
Organic heterostructures (OHTs) with the desired geometry organization on micro/nanoscale have undergone rapid progress in nanoscience and nanotechnology. However, it is a significant challenge to elucidate the epitaxial-growth process for various OHTs composed of organic units with a lattice mismatching ratio of > 3%, which is unimaginable for inorganic heterostructures. Herein, we have demonstrated a vivid visualization of the morphology evolution of epitaxial-growth based on a doped interfacial-layer, which facilitates the comprehensive understanding of the hierarchical self-assembly of core-shell OHT with precise spatial configuration. Significantly, the barcoded OHT with periodic shells obviously illustrate the shell epitaxial-growth from tips to center parts along the seeded rods for forming the core-shell OHT. Furthermore, the diameter, length, and number of periodic shells were modulated by finely tuning the stoichiometric ratio, crystalline time, and temperature, respectively. This epitaxial-growth process could be generalized to organic systems with facile chemical/structural compatibility for forming the desired OHTs., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF