1. Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery.
- Author
-
Qiu T, Andrus R, Aravena MC, Ascoli D, Bergeron Y, Berretti R, Berveiller D, Bogdziewicz M, Boivin T, Bonal R, Bragg DC, Caignard T, Calama R, Camarero JJ, Chang-Yang CH, Cleavitt NL, Courbaud B, Courbet F, Curt T, Das AJ, Daskalakou E, Davi H, Delpierre N, Delzon S, Dietze M, Calderon SD, Dormont L, Espelta J, Fahey TJ, Farfan-Rios W, Gehring CA, Gilbert GS, Gratzer G, Greenberg CH, Guo Q, Hacket-Pain A, Hampe A, Han Q, Hille Ris Lambers J, Hoshizaki K, Ibanez I, Johnstone JF, Journé V, Kabeya D, Kilner CL, Kitzberger T, Knops JMH, Kobe RK, Kunstler G, Lageard JGA, LaMontagne JM, Ledwon M, Lefevre F, Leininger T, Limousin JM, Lutz JA, Macias D, McIntire EJB, Moore CM, Moran E, Motta R, Myers JA, Nagel TA, Noguchi K, Ourcival JM, Parmenter R, Pearse IS, Perez-Ramos IM, Piechnik L, Poulsen J, Poulton-Kamakura R, Redmond MD, Reid CD, Rodman KC, Rodriguez-Sanchez F, Sanguinetti JD, Scher CL, Schlesinger WH, Schmidt Van Marle H, Seget B, Sharma S, Silman M, Steele MA, Stephenson NL, Straub JN, Sun IF, Sutton S, Swenson JJ, Swift M, Thomas PA, Uriarte M, Vacchiano G, Veblen TT, Whipple AV, Whitham TG, Wion AP, Wright B, Wright SJ, Zhu K, Zimmerman JK, Zlotin R, Zywiec M, and Clark JS
- Subjects
- Fertility, Reproduction, Trees, Forests, Seeds physiology
- Abstract
The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF