Claire B, Péan, Mark, Schiebler, Sharon W S, Tan, Jessica A, Sharrock, Katrin, Kierdorf, Karen P, Brown, M Charlotte, Maserumule, Shinelle, Menezes, Martina, Pilátová, Kévin, Bronda, Pierre, Guermonprez, Brian M, Stramer, R, Andres Floto, and Marc S, Dionne
Mycobacterium tuberculosis remains a global threat to human health, yet the molecular mechanisms regulating immunity remain poorly understood. Cytokines can promote or inhibit mycobacterial survival inside macrophages and the underlying mechanisms represent potential targets for host-directed therapies. Here we show that cytokine-STAT signalling promotes mycobacterial survival within macrophages by deregulating lipid droplets via ATG2 repression. In Drosophila infected with Mycobacterium marinum, mycobacterium-induced STAT activity triggered by unpaired-family cytokines reduces Atg2 expression, permitting deregulation of lipid droplets. Increased Atg2 expression or reduced macrophage triglyceride biosynthesis, normalizes lipid deposition in infected phagocytes and reduces numbers of viable intracellular mycobacteria. In human macrophages, addition of IL-6 promotes mycobacterial survival and BCG-induced lipid accumulation by a similar, but probably not identical, mechanism. Our results reveal Atg2 regulation as a mechanism by which cytokines can control lipid droplet homeostasis and consequently resistance to mycobacterial infection in Drosophila., Cytokines and their associated pathways can affect survival of Mycobacterium tuberculosis in macrophages, representing potential targets for host-directed therapies. Here, Péan et al. show that cytokine-STAT signalling promotes mycobacterial survival within macrophages by deregulating lipid droplet homeostasis.