Andrew Callan-Jones, Emmanuel Lemichez, John Manzi, Hongxia Zhao, Pekka Lappalainen, Patricia Bassereau, Coline Prévost, Physico-Chimie-Curie (PCC), Centre National de la Recherche Scientifique (CNRS)-Institut Curie [Paris]-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC), Université Paris Diderot - Paris 7 (UPD7), HiLIFE - Institute of Biotechnology [Helsinki] (BI), Helsinki Institute of Life Science (HiLIFE), University of Helsinki-University of Helsinki, Centre méditerranéen de médecine moléculaire (C3M), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM), Matière et Systèmes Complexes (MSC (UMR_7057)), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), This work was supported by Institut Curie, Centre National de la Recherche Scientifique (CNRS) and the Agence Nationale pour la Recherche (grant ANR-11-BSV2-014). C.P. received a PhD grant from the Université Paris Diderot and support from the Fondation pour la Recherche Médicale. P.B. group belongs to the CNRS consortium CellTiss, to the Labex CelTisPhyBio (ANR-11-LABX0038) and to Paris Sciences et Lettres (ANR-10-IDEX-0001_02). P.L. and H.Z were supported by grants from Academy of Finland., We thank Essi Koskela for help during protein purification. We also thank Guy Tran van Nhieu for carefully reading the manuscript., ANR-11-LABX-0038,CelTisPhyBio,Des cellules aux tissus: au croisement de la Physique et de la Biologie(2011), ANR-11-BSV2-0014,RetroWASH,Remodelage des membranes endosomales par deux machines moléculaires en interaction, le Retromer et le complexe WASH(2011), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Curie [Paris]-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Helsingin yliopisto = Helsingfors universitet = University of Helsinki-Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Côte d'Azur (UCA), Matière et Systèmes Complexes (MSC), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut Curie-Université Pierre et Marie Curie - Paris 6 (UPMC), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM), ANR: 11-LABX-0038,CelTisPhyBio,Des cellules aux tissus: au croisement de la Physique et de la Biologie(2011), Institute of Biotechnology, Hongxia Zhao / Principal Investigator, Pekka Lappalainen / Principal Investigator, and Mitochondrial Morphogenesis
BAR domain proteins contribute to membrane deformation in diverse cellular processes. The inverted-BAR (I-BAR) protein IRSp53, for instance, is found on the inner leaflet of the tubular membrane of filopodia; however its role in the formation of these structures is incompletely understood. Here we develop an original assay in which proteins are encapsulated in giant unilamellar vesicles connected to membrane nanotubes. Our results demonstrate that I-BAR dimers sense negative membrane curvature. Experiment and theory reveal that the I-BAR displays a non-monotonic sorting with curvature, and expands the tube at high imposed tension while constricting it at low tension. Strikingly, at low protein density and tension, protein-rich domains appear along the tube. This peculiar behaviour is due to the shallow intrinsic curvature of I-BAR dimers. It allows constriction of weakly curved membranes coupled to local protein enrichment at biologically relevant conditions. This might explain how IRSp53 contributes in vivo to the initiation of filopodia., The inverted-BAR domain protein IRSp53 associates with the inner leaflet of tubular membranes such as filopodia. Here, Prévost et al. demonstrate that the I-BAR domain of IRSp53 senses negative membrane curvature, and undergoes phase separation which may aid its clustering upon filopodia generation.