1. Copper amine oxidases catalyze the oxidative deamination and hydrolysis of cyclic imines.
- Author
-
Nagakubo, Toshiki, Kumano, Takuto, Ohta, Takehiro, Hashimoto, Yoshiteru, and Kobayashi, Michihiko
- Abstract
Although cyclic imines are present in various bioactive secondary metabolites, their degradative metabolism remains unknown. Here, we report that copper amine oxidases, which are important in metabolism of primary amines, catalyze a cyclic imine cleavage reaction. We isolate a microorganism (Arthrobacter sp. C-4A) which metabolizes a β-carboline alkaloid, harmaline. The harmaline-metabolizing enzyme (HarA) purified from strain C-4A is found to be copper amine oxidase and catalyze a ring-opening reaction of cyclic imine within harmaline, besides oxidative deamination of amines. Growth experiments on strain C-4A and Western blot analysis indicate that the HarA expression is induced by harmaline. We propose a reaction mechanism of the cyclic imine cleavage by HarA containing a post-translationally-synthesized cofactor, topaquinone. Together with the above results, the finding of the same activity of copper amine oxidase from E. coli suggests that, in many living organisms, these enzymes may play crucial roles in metabolism of ubiquitous cyclic imines. Little is known about the degradation pathway of cyclic imines that are frequently found in bioactive secondary metabolites. Here, the authors found and characterised a copper amine oxidase, HarA that catalyses a ring-opening reaction of cyclic imine in harmaline and oxidative deamination of amines. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF