12 results on '"Fröhling S"'
Search Results
2. Single-cell division tracing and transcriptomics reveal cell types and differentiation paths in the regenerating lung.
- Author
-
Martins LR, Sieverling L, Michelhans M, Schiller C, Erkut C, Grünewald TGP, Triana S, Fröhling S, Velten L, Glimm H, and Scholl C
- Subjects
- Mice, Animals, Humans, Cell Differentiation, Gene Expression Profiling, Cell Division, Diphtheria Toxin metabolism, Lung metabolism
- Abstract
Understanding the molecular and cellular processes involved in lung epithelial regeneration may fuel the development of therapeutic approaches for lung diseases. We combine mouse models allowing diphtheria toxin-mediated damage of specific epithelial cell types and parallel GFP-labeling of functionally dividing cells with single-cell transcriptomics to characterize the regeneration of the distal lung. We uncover cell types, including Krt13
+ basal and Krt15+ club cells, detect an intermediate cell state between basal and goblet cells, reveal goblet cells as actively dividing progenitor cells, and provide evidence that adventitial fibroblasts act as supporting cells in epithelial regeneration. We also show that diphtheria toxin-expressing cells can persist in the lung, express specific inflammatory factors, and transcriptionally resemble a previously undescribed population in the lungs of COVID-19 patients. Our study provides a comprehensive single-cell atlas of the distal lung that characterizes early transcriptional and cellular responses to concise epithelial injury, encompassing proliferation, differentiation, and cell-to-cell interactions., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
3. Dermatologist-like explainable AI enhances trust and confidence in diagnosing melanoma.
- Author
-
Chanda T, Hauser K, Hobelsberger S, Bucher TC, Garcia CN, Wies C, Kittler H, Tschandl P, Navarrete-Dechent C, Podlipnik S, Chousakos E, Crnaric I, Majstorovic J, Alhajwan L, Foreman T, Peternel S, Sarap S, Özdemir İ, Barnhill RL, Llamas-Velasco M, Poch G, Korsing S, Sondermann W, Gellrich FF, Heppt MV, Erdmann M, Haferkamp S, Drexler K, Goebeler M, Schilling B, Utikal JS, Ghoreschi K, Fröhling S, Krieghoff-Henning E, and Brinker TJ
- Subjects
- Humans, Artificial Intelligence, Dermatologists, Diagnosis, Differential, Trust, Melanoma diagnosis
- Abstract
Artificial intelligence (AI) systems have been shown to help dermatologists diagnose melanoma more accurately, however they lack transparency, hindering user acceptance. Explainable AI (XAI) methods can help to increase transparency, yet often lack precise, domain-specific explanations. Moreover, the impact of XAI methods on dermatologists' decisions has not yet been evaluated. Building upon previous research, we introduce an XAI system that provides precise and domain-specific explanations alongside its differential diagnoses of melanomas and nevi. Through a three-phase study, we assess its impact on dermatologists' diagnostic accuracy, diagnostic confidence, and trust in the XAI-support. Our results show strong alignment between XAI and dermatologist explanations. We also show that dermatologists' confidence in their diagnoses, and their trust in the support system significantly increase with XAI compared to conventional AI. This study highlights dermatologists' willingness to adopt such XAI systems, promoting future use in the clinic., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
4. Multi-omic and functional analysis for classification and treatment of sarcomas with FUS-TFCP2 or EWSR1-TFCP2 fusions.
- Author
-
Schöpf J, Uhrig S, Heilig CE, Lee KS, Walther T, Carazzato A, Dobberkau AM, Weichenhan D, Plass C, Hartmann M, Diwan GD, Carrero ZI, Ball CR, Hohl T, Kindler T, Rudolph-Hähnel P, Helm D, Schneider M, Nilsson A, Øra I, Imle R, Banito A, Russell RB, Jones BC, Lipka DB, Glimm H, Hübschmann D, Hartmann W, Fröhling S, and Scholl C
- Subjects
- Humans, Multiomics, Precision Medicine, Transcription Factors genetics, RNA-Binding Protein EWS genetics, Receptor Protein-Tyrosine Kinases, Biomarkers, Tumor genetics, Oncogene Proteins, Fusion genetics, Protein-Arginine N-Methyltransferases, DNA-Binding Proteins genetics, Sarcoma genetics, Sarcoma therapy, Sarcoma diagnosis, Soft Tissue Neoplasms genetics, Soft Tissue Neoplasms therapy
- Abstract
Linking clinical multi-omics with mechanistic studies may improve the understanding of rare cancers. We leverage two precision oncology programs to investigate rhabdomyosarcoma with FUS/EWSR1-TFCP2 fusions, an orphan malignancy without effective therapies. All tumors exhibit outlier ALK expression, partly accompanied by intragenic deletions and aberrant splicing resulting in ALK variants that are oncogenic and sensitive to ALK inhibitors. Additionally, recurrent CKDN2A/MTAP co-deletions provide a rationale for PRMT5-targeted therapies. Functional studies show that FUS-TFCP2 blocks myogenic differentiation, induces transcription of ALK and truncated TERT, and inhibits DNA repair. Unlike other fusion-driven sarcomas, TFCP2-rearranged tumors exhibit genomic instability and signs of defective homologous recombination. DNA methylation profiling demonstrates a close relationship with undifferentiated sarcomas. In two patients, sarcoma was preceded by benign lesions carrying FUS-TFCP2, indicating stepwise sarcomagenesis. This study illustrates the potential of linking precision oncology with preclinical research to gain insight into the classification, pathogenesis, and therapeutic vulnerabilities of rare cancers., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
5. Proteogenomic analysis reveals RNA as a source for tumor-agnostic neoantigen identification.
- Author
-
Tretter C, de Andrade Krätzig N, Pecoraro M, Lange S, Seifert P, von Frankenberg C, Untch J, Zuleger G, Wilhelm M, Zolg DP, Dreyer FS, Bräunlein E, Engleitner T, Uhrig S, Boxberg M, Steiger K, Slotta-Huspenina J, Ochsenreither S, von Bubnoff N, Bauer S, Boerries M, Jost PJ, Schenck K, Dresing I, Bassermann F, Friess H, Reim D, Grützmann K, Pfütze K, Klink B, Schröck E, Haller B, Kuster B, Mann M, Weichert W, Fröhling S, Rad R, Hiltensperger M, and Krackhardt AM
- Subjects
- Humans, Antigens, Neoplasm genetics, Peptides, Proteogenomics, Neoplasms genetics
- Abstract
Systemic pan-tumor analyses may reveal the significance of common features implicated in cancer immunogenicity and patient survival. Here, we provide a comprehensive multi-omics data set for 32 patients across 25 tumor types for proteogenomic-based discovery of neoantigens. By using an optimized computational approach, we discover a large number of tumor-specific and tumor-associated antigens. To create a pipeline for the identification of neoantigens in our cohort, we combine DNA and RNA sequencing with MS-based immunopeptidomics of tumor specimens, followed by the assessment of their immunogenicity and an in-depth validation process. We detect a broad variety of non-canonical HLA-binding peptides in the majority of patients demonstrating partially immunogenicity. Our validation process allows for the selection of 32 potential neoantigen candidates. The majority of neoantigen candidates originates from variants identified in the RNA data set, illustrating the relevance of RNA as a still understudied source of cancer antigens. This study underlines the importance of RNA-centered variant detection for the identification of shared biomarkers and potentially relevant neoantigen candidates., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
6. Comprehensive genomic and epigenomic analysis in cancer of unknown primary guides molecularly-informed therapies despite heterogeneity.
- Author
-
Möhrmann L, Werner M, Oleś M, Mock A, Uhrig S, Jahn A, Kreutzfeldt S, Fröhlich M, Hutter B, Paramasivam N, Richter D, Beck K, Winter U, Pfütze K, Heilig CE, Teleanu V, Lipka DB, Zapatka M, Hanf D, List C, Allgäuer M, Penzel R, Rüter G, Jelas I, Hamacher R, Falkenhorst J, Wagner S, Brandts CH, Boerries M, Illert AL, Metzeler KH, Westphalen CB, Desuki A, Kindler T, Folprecht G, Weichert W, Brors B, Stenzinger A, Schröck E, Hübschmann D, Horak P, Heining C, Fröhling S, and Glimm H
- Subjects
- Epigenomics, Genomics, Homozygote, Humans, Mutation, Sequence Deletion, Neoplasms, Unknown Primary drug therapy, Neoplasms, Unknown Primary genetics
- Abstract
The benefit of molecularly-informed therapies in cancer of unknown primary (CUP) is unclear. Here, we use comprehensive molecular characterization by whole genome/exome, transcriptome and methylome analysis in 70 CUP patients to reveal substantial mutational heterogeneity with TP53, MUC16, KRAS, LRP1B and CSMD3 being the most frequently mutated known cancer-related genes. The most common fusion partner is FGFR2, the most common focal homozygous deletion affects CDKN2A. 56/70 (80%) patients receive genomics-based treatment recommendations which are applied in 20/56 (36%) cases. Transcriptome and methylome data provide evidence for the underlying entity in 62/70 (89%) cases. Germline analysis reveals five (likely) pathogenic mutations in five patients. Recommended off-label therapies translate into a mean PFS ratio of 3.6 with a median PFS1 of 2.9 months (17 patients) and a median PFS2 of 7.8 months (20 patients). Our data emphasize the clinical value of molecular analysis and underline the need for innovative, mechanism-based clinical trials., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
7. Sarcoma classification by DNA methylation profiling.
- Author
-
Koelsche C, Schrimpf D, Stichel D, Sill M, Sahm F, Reuss DE, Blattner M, Worst B, Heilig CE, Beck K, Horak P, Kreutzfeldt S, Paff E, Stark S, Johann P, Selt F, Ecker J, Sturm D, Pajtler KW, Reinhardt A, Wefers AK, Sievers P, Ebrahimi A, Suwala A, Fernández-Klett F, Casalini B, Korshunov A, Hovestadt V, Kommoss FKF, Kriegsmann M, Schick M, Bewerunge-Hudler M, Milde T, Witt O, Kulozik AE, Kool M, Romero-Pérez L, Grünewald TGP, Kirchner T, Wick W, Platten M, Unterberg A, Uhl M, Abdollahi A, Debus J, Lehner B, Thomas C, Hasselblatt M, Paulus W, Hartmann C, Staszewski O, Prinz M, Hench J, Frank S, Versleijen-Jonkers YMH, Weidema ME, Mentzel T, Griewank K, de Álava E, Martín JD, Gastearena MAI, Chang KT, Low SYY, Cuevas-Bourdier A, Mittelbronn M, Mynarek M, Rutkowski S, Schüller U, Mautner VF, Schittenhelm J, Serrano J, Snuderl M, Büttner R, Klingebiel T, Buslei R, Gessler M, Wesseling P, Dinjens WNM, Brandner S, Jaunmuktane Z, Lyskjær I, Schirmacher P, Stenzinger A, Brors B, Glimm H, Heining C, Tirado OM, Sáinz-Jaspeado M, Mora J, Alonso J, Del Muro XG, Moran S, Esteller M, Benhamida JK, Ladanyi M, Wardelmann E, Antonescu C, Flanagan A, Dirksen U, Hohenberger P, Baumhoer D, Hartmann W, Vokuhl C, Flucke U, Petersen I, Mechtersheimer G, Capper D, Jones DTW, Fröhling S, Pfister SM, and von Deimling A
- Subjects
- Bone Neoplasms classification, Bone Neoplasms diagnosis, Cohort Studies, DNA Copy Number Variations genetics, Humans, Internet, Reproducibility of Results, Sarcoma classification, Sarcoma diagnosis, Sensitivity and Specificity, Soft Tissue Neoplasms classification, Soft Tissue Neoplasms diagnosis, Algorithms, Bone Neoplasms genetics, DNA Methylation, Machine Learning, Sarcoma genetics, Soft Tissue Neoplasms genetics
- Abstract
Sarcomas are malignant soft tissue and bone tumours affecting adults, adolescents and children. They represent a morphologically heterogeneous class of tumours and some entities lack defining histopathological features. Therefore, the diagnosis of sarcomas is burdened with a high inter-observer variability and misclassification rate. Here, we demonstrate classification of soft tissue and bone tumours using a machine learning classifier algorithm based on array-generated DNA methylation data. This sarcoma classifier is trained using a dataset of 1077 methylation profiles from comprehensively pre-characterized cases comprising 62 tumour methylation classes constituting a broad range of soft tissue and bone sarcoma subtypes across the entire age spectrum. The performance is validated in a cohort of 428 sarcomatous tumours, of which 322 cases were classified by the sarcoma classifier. Our results demonstrate the potential of the DNA methylation-based sarcoma classification for research and future diagnostic applications.
- Published
- 2021
- Full Text
- View/download PDF
8. MCL-1 gains occur with high frequency in lung adenocarcinoma and can be targeted therapeutically.
- Author
-
Munkhbaatar E, Dietzen M, Agrawal D, Anton M, Jesinghaus M, Boxberg M, Pfarr N, Bidola P, Uhrig S, Höckendorf U, Meinhardt AL, Wahida A, Heid I, Braren R, Mishra R, Warth A, Muley T, Poh PSP, Wang X, Fröhling S, Steiger K, Slotta-Huspenina J, van Griensven M, Pfeiffer F, Lange S, Rad R, Spella M, Stathopoulos GT, Ruland J, Bassermann F, Weichert W, Strasser A, Branca C, Heikenwalder M, Swanton C, McGranahan N, and Jost PJ
- Subjects
- Animals, Antineoplastic Agents therapeutic use, Apoptosis drug effects, Apoptosis genetics, Carcinoma, Non-Small-Cell Lung diagnostic imaging, Carcinoma, Non-Small-Cell Lung drug therapy, Carcinoma, Non-Small-Cell Lung pathology, Cell Line, Tumor, Cell Survival drug effects, Cell Survival genetics, Clonal Evolution, DNA Copy Number Variations, Datasets as Topic, Disease Models, Animal, Disease Progression, Humans, Lung diagnostic imaging, Lung pathology, Lung Neoplasms diagnostic imaging, Lung Neoplasms drug therapy, Lung Neoplasms pathology, Mice, Mice, Transgenic, Mutation, Myeloid Cell Leukemia Sequence 1 Protein antagonists & inhibitors, Primary Cell Culture, Prospective Studies, Proto-Oncogene Proteins p21(ras) genetics, Pyrimidines pharmacology, Pyrimidines therapeutic use, RNA-Seq, Retrospective Studies, Spheroids, Cellular, Thiophenes pharmacology, Thiophenes therapeutic use, Tumor Burden drug effects, Tumor Burden genetics, Tumor Suppressor Protein p53 genetics, X-Ray Microtomography, Antineoplastic Agents pharmacology, Carcinoma, Non-Small-Cell Lung genetics, Lung Neoplasms genetics, Myeloid Cell Leukemia Sequence 1 Protein genetics
- Abstract
Evasion of programmed cell death represents a critical form of oncogene addiction in cancer cells. Understanding the molecular mechanisms underpinning cancer cell survival despite the oncogenic stress could provide a molecular basis for potential therapeutic interventions. Here we explore the role of pro-survival genes in cancer cell integrity during clonal evolution in non-small cell lung cancer (NSCLC). We identify gains of MCL-1 at high frequency in multiple independent NSCLC cohorts, occurring both clonally and subclonally. Clonal loss of functional TP53 is significantly associated with subclonal gains of MCL-1. In mice, tumour progression is delayed upon pharmacologic or genetic inhibition of MCL-1. These findings reveal that MCL-1 gains occur with high frequency in lung adenocarcinoma and can be targeted therapeutically.
- Published
- 2020
- Full Text
- View/download PDF
9. Hematopoietic stem and progenitor cell-restricted Cdx2 expression induces transformation to myelodysplasia and acute leukemia.
- Author
-
Vu T, Straube J, Porter AH, Bywater M, Song A, Ling V, Cooper L, Pali G, Bruedigam C, Jacquelin S, Green J, Magor G, Perkins A, Chalk AM, Walkley CR, Heidel FH, Mukhopadhyay P, Cloonan N, Gröschel S, Mallm JP, Fröhling S, Scholl C, and Lane SW
- Subjects
- Animals, CDX2 Transcription Factor genetics, Cell Transformation, Neoplastic, Female, Gene Expression Regulation, Neoplastic, Humans, Leukemia, Myeloid, Acute genetics, Leukemia, Myeloid, Acute physiopathology, Mice, Mice, Inbred C57BL, Mice, Transgenic, Myelodysplastic Syndromes genetics, Myelodysplastic Syndromes physiopathology, CDX2 Transcription Factor metabolism, Hematopoietic Stem Cells metabolism, Leukemia, Myeloid, Acute metabolism, Myelodysplastic Syndromes metabolism
- Abstract
The caudal-related homeobox transcription factor CDX2 is expressed in leukemic cells but not during normal blood formation. Retroviral overexpression of Cdx2 induces AML in mice, however the developmental stage at which CDX2 exerts its effect is unknown. We developed a conditionally inducible Cdx2 mouse model to determine the effects of in vivo, inducible Cdx2 expression in hematopoietic stem and progenitor cells (HSPCs). Cdx2-transgenic mice develop myelodysplastic syndrome with progression to acute leukemia associated with acquisition of additional driver mutations. Cdx2-expressing HSPCs demonstrate enrichment of hematopoietic-specific enhancers associated with pro-differentiation transcription factors. Furthermore, treatment of Cdx2 AML with azacitidine decreases leukemic burden. Extended scheduling of low-dose azacitidine shows greater efficacy in comparison to intermittent higher-dose azacitidine, linked to more specific epigenetic modulation. Conditional Cdx2 expression in HSPCs is an inducible model of de novo leukemic transformation and can be used to optimize treatment in high-risk AML.
- Published
- 2020
- Full Text
- View/download PDF
10. The landscape of chromothripsis across adult cancer types.
- Author
-
Voronina N, Wong JKL, Hübschmann D, Hlevnjak M, Uhrig S, Heilig CE, Horak P, Kreutzfeldt S, Mock A, Stenzinger A, Hutter B, Fröhlich M, Brors B, Jahn A, Klink B, Gieldon L, Sieverling L, Feuerbach L, Chudasama P, Beck K, Kroiss M, Heining C, Möhrmann L, Fischer A, Schröck E, Glimm H, Zapatka M, Lichter P, Fröhling S, and Ernst A
- Subjects
- Adult, Genome, Human genetics, Genomic Instability genetics, Humans, Telomere genetics, Telomere metabolism, Chromothripsis, Neoplasms genetics
- Abstract
Chromothripsis is a recently identified mutational phenomenon, by which a presumably single catastrophic event generates extensive genomic rearrangements of one or a few chromosome(s). Considered as an early event in tumour development, this form of genome instability plays a prominent role in tumour onset. Chromothripsis prevalence might have been underestimated when using low-resolution methods, and pan-cancer studies based on sequencing are rare. Here we analyse chromothripsis in 28 tumour types covering all major adult cancers (634 tumours, 316 whole-genome and 318 whole-exome sequences). We show that chromothripsis affects a substantial proportion of human cancers, with a prevalence of 49% across all cases. Chromothripsis generates entity-specific genomic alterations driving tumour development, including clinically relevant druggable fusions. Chromothripsis is linked with specific telomere patterns and univocal mutational signatures in distinct tumour entities. Longitudinal analysis of chromothriptic patterns in 24 matched tumour pairs reveals insights in the clonal evolution of tumours with chromothripsis.
- Published
- 2020
- Full Text
- View/download PDF
11. Defective homologous recombination DNA repair as therapeutic target in advanced chordoma.
- Author
-
Gröschel S, Hübschmann D, Raimondi F, Horak P, Warsow G, Fröhlich M, Klink B, Gieldon L, Hutter B, Kleinheinz K, Bonekamp D, Marschal O, Chudasama P, Mika J, Groth M, Uhrig S, Krämer S, Heining C, Heilig CE, Richter D, Reisinger E, Pfütze K, Eils R, Wolf S, von Kalle C, Brandts C, Scholl C, Weichert W, Richter S, Bauer S, Penzel R, Schröck E, Stenzinger A, Schlenk RF, Brors B, Russell RB, Glimm H, Schlesner M, and Fröhling S
- Subjects
- Adult, Aged, Chordoma genetics, Chordoma pathology, Chromosome Mapping, DNA Breaks, Double-Stranded, DNA Mutational Analysis, Drug Resistance, Neoplasm genetics, Female, Genomic Instability, Humans, Male, Middle Aged, Phthalazines pharmacology, Piperazines pharmacology, Poly (ADP-Ribose) Polymerase-1 antagonists & inhibitors, Poly(ADP-ribose) Polymerase Inhibitors pharmacology, Precision Medicine methods, Protein Domains genetics, Treatment Outcome, Exome Sequencing, Chordoma drug therapy, Phthalazines therapeutic use, Piperazines therapeutic use, Poly (ADP-Ribose) Polymerase-1 genetics, Poly(ADP-ribose) Polymerase Inhibitors therapeutic use, Recombinational DNA Repair genetics
- Abstract
Chordomas are rare bone tumors with few therapeutic options. Here we show, using whole-exome and genome sequencing within a precision oncology program, that advanced chordomas (n = 11) may be characterized by genomic patterns indicative of defective homologous recombination (HR) DNA repair and alterations affecting HR-related genes, including, for example, deletions and pathogenic germline variants of BRCA2, NBN, and CHEK2. A mutational signature associated with HR deficiency was significantly enriched in 72.7% of samples and co-occurred with genomic instability. The poly(ADP-ribose) polymerase (PARP) inhibitor olaparib, which is preferentially toxic to HR-incompetent cells, led to prolonged clinical benefit in a patient with refractory chordoma, and whole-genome analysis at progression revealed a PARP1 p.T910A mutation predicted to disrupt the autoinhibitory PARP1 helical domain. These findings uncover a therapeutic opportunity in chordoma that warrants further exploration, and provide insight into the mechanisms underlying PARP inhibitor resistance.
- Published
- 2019
- Full Text
- View/download PDF
12. Integrative genomic and transcriptomic analysis of leiomyosarcoma.
- Author
-
Chudasama P, Mughal SS, Sanders MA, Hübschmann D, Chung I, Deeg KI, Wong SH, Rabe S, Hlevnjak M, Zapatka M, Ernst A, Kleinheinz K, Schlesner M, Sieverling L, Klink B, Schröck E, Hoogenboezem RM, Kasper B, Heilig CE, Egerer G, Wolf S, von Kalle C, Eils R, Stenzinger A, Weichert W, Glimm H, Gröschel S, Kopp HG, Omlor G, Lehner B, Bauer S, Schimmack S, Ulrich A, Mechtersheimer G, Rippe K, Brors B, Hutter B, Renner M, Hohenberger P, Scholl C, and Fröhling S
- Subjects
- Adult, Aged, Aged, 80 and over, Chromothripsis, DNA Copy Number Variations, Female, Gene Duplication, Gene Expression Profiling, Genes, Retinoblastoma, Genes, p53, Genomics, Humans, Male, Middle Aged, Mutation, Sequence Analysis, RNA, Telomere Homeostasis, Exome Sequencing, Young Adult, Leiomyosarcoma genetics, Leiomyosarcoma metabolism
- Abstract
Leiomyosarcoma (LMS) is an aggressive mesenchymal malignancy with few therapeutic options. The mechanisms underlying LMS development, including clinically actionable genetic vulnerabilities, are largely unknown. Here we show, using whole-exome and transcriptome sequencing, that LMS tumors are characterized by substantial mutational heterogeneity, near-universal inactivation of TP53 and RB1, widespread DNA copy number alterations including chromothripsis, and frequent whole-genome duplication. Furthermore, we detect alternative telomere lengthening in 78% of cases and identify recurrent alterations in telomere maintenance genes such as ATRX, RBL2, and SP100, providing insight into the genetic basis of this mechanism. Finally, most tumors display hallmarks of "BRCAness", including alterations in homologous recombination DNA repair genes, multiple structural rearrangements, and enrichment of specific mutational signatures, and cultured LMS cells are sensitive towards olaparib and cisplatin. This comprehensive study of LMS genomics has uncovered key biological features that may inform future experimental research and enable the design of novel therapies.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.