1. The Rad53CHK1/CHK2-Spt21NPAT and Tel1ATM axes couple glucose tolerance to histone dosage and subtelomeric silencing
- Author
-
Bruhn, Christopher, Ajazi, Arta, Ferrari, Elisa, Lanz, Michael Charles, Lanz, Michael, Batrin, Renaud, Choudhary, Ramveer, Walvekar, Adhish, Laxman, Sunil, Longhese, Maria Pia, Fabre, Emmanuelle, Bustamente Smolka, Marcus, Foiani, Marco, IFOM, Istituto FIRC di Oncologia Molecolare (IFOM), Cornell University [New York], Génomes, biologie cellulaire et thérapeutiques (GenCellDi (UMR_S_944)), Collège de France (CdF (institution))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institute for Stem Cell Science and Regenerative Medicine [Bangalore, Inde] (inStem), Università degli Studi di Milano-Bicocca [Milano] (UNIMIB), Università degli Studi di Milano [Milano] (UNIMI), C.B. was supported by fellowships from Associazione Italiana per la Ricerca sul Cancro (AIRC) Fellowship i-Care (Marie Curie co-funded by the European Union, ID 16173) and the European Commission (EC-FP7-SIPOD, ID PCOFUND-GA-2012-600399). This work was supported by grants from Fondazione AIRC under IG 2015 (M.F., ID 16770), IG 2018 (M.F., ID 21416), and IG 2017 (M.P.L., ID 19783), by the Ministero dell'Istruzione/Ministero dell'Università e della Ricerca (M.F., MIUR-PRIN-15-FOIANI) and by Progetti di Ricerca di Interesse Nazionale (PRIN) 2015 (M.P.L.). E. Fabre acknowledges Labex 'Who am I?' (ANR-11-LABX-0071, Idex ANR-11-IDEX-0005-02) and Cancéropôle Ile de France (ORFOCRISE PME-2015)., ANR-11-IDEX-0005,USPC,Université Sorbonne Paris Cité(2011), Bruhn, C, Ajazi, A, Ferrari, E, Lanz, M, Batrin, R, Choudhary, R, Walvekar, A, Laxman, S, Longhese, M, Fabre, E, Smolka, M, Foiani, M, Génomes, biologie cellulaire et thérapeutiques (GenCellDi (U944 / UMR7212)), Collège de France (CdF (institution))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Università degli Studi di Milano-Bicocca = University of Milano-Bicocca (UNIMIB), Università degli Studi di Milano = University of Milan (UNIMI), Bodescot, Myriam, and Université Sorbonne Paris Cité - - USPC2011 - ANR-11-IDEX-0005 - IDEX - VALID
- Subjects
0301 basic medicine ,DNA Repair ,DNA damage ,DNA repair ,[SDV]Life Sciences [q-bio] ,Science ,General Physics and Astronomy ,Saccharomyces cerevisiae ,[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] ,02 engineering and technology ,Protein-Serine-Threonine Kinase ,General Biochemistry, Genetics and Molecular Biology ,Ataxia Telangiectasia Mutated Protein ,03 medical and health sciences ,Histone Deacetylase ,Cell Cycle Protein ,[SDV.BC.BC] Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] ,Serine ,Gene Silencing ,Epigenetics ,Phosphorylation ,lcsh:Science ,Transcription factor ,ComputingMilieux_MISCELLANEOUS ,Multidisciplinary ,biology ,Chemistry ,Acetylation ,General Chemistry ,Telomere ,021001 nanoscience & nanotechnology ,Subtelomere ,Chromatin ,Cell biology ,Checkpoint Kinase 2 ,Histone ,Glucose ,030104 developmental biology ,Intracellular Signaling Peptides and Protein ,Mutation ,biology.protein ,lcsh:Q ,0210 nano-technology ,Saccharomyces cerevisiae Protein ,DNA Damage ,Transcription Factors - Abstract
The DNA damage response (DDR) coordinates DNA metabolism with nuclear and non-nuclear processes. The DDR kinase Rad53CHK1/CHK2 controls histone degradation to assist DNA repair. However, Rad53 deficiency causes histone-dependent growth defects in the absence of DNA damage, pointing out unknown physiological functions of the Rad53-histone axis. Here we show that histone dosage control by Rad53 ensures metabolic homeostasis. Under physiological conditions, Rad53 regulates histone levels through inhibitory phosphorylation of the transcription factor Spt21NPAT on Ser276. Rad53-Spt21 mutants display severe glucose dependence, caused by excess histones through two separable mechanisms: dampening of acetyl-coenzyme A-dependent carbon metabolism through histone hyper-acetylation, and Sirtuin-mediated silencing of starvation-induced subtelomeric domains. We further demonstrate that repression of subtelomere silencing by physiological Tel1ATM and Rpd3HDAC activities coveys tolerance to glucose restriction. Our findings identify DDR mutations, histone imbalances and aberrant subtelomeric chromatin as interconnected causes of glucose dependence, implying that DDR kinases coordinate metabolism and epigenetic changes.
- Published
- 2020
- Full Text
- View/download PDF