8 results on '"B. Mansart"'
Search Results
2. Ultrafast evolution and transient phases of a prototype out-of-equilibrium Mott–Hubbard material
- Author
-
G. Lantz, B. Mansart, D. Grieger, D. Boschetto, N. Nilforoushan, E. Papalazarou, N. Moisan, L. Perfetti, V. L. R. Jacques, D. Le Bolloc'h, C. Laulhé, S. Ravy, J-P Rueff, T. E. Glover, M. P. Hertlein, Z. Hussain, S. Song, M. Chollet, M. Fabrizio, and M. Marsi
- Subjects
Science - Abstract
Ultrafast photoexcitation stabilizes new states of matter with rich out-of-equilibrium behaviours. Here, Lantzet al. report a transient non-thermal phase developing immediately after photoexcitation in V2O3, shedding a light on optical manipulation of strongly correlated systems.
- Published
- 2017
- Full Text
- View/download PDF
3. Reply to: Ultrafast evolution and transient phases of a prototype out-of-equilibrium Mott-Hubbard material
- Author
-
Michele Fabrizio, M. P. Hertlein, B. Mansart, Zahid Hussain, Thornton E. Glover, Jean-Pascal Rueff, Luca Perfetti, Gabriel Lantz, N. Nilforoushan, N. Moisan, Davide Boschetto, M. Zaghrioui, M. Weis, Vincent Jacques, Claire Laulhé, Daniel Grieger, D. Le Bolloc'h, J. Caillaux, Evangelos Papalazarou, J. Zhang, Sanghoon Song, M. Chollet, S. Ravy, Marino Marsi, Laboratoire d'optique appliquée (LOA), École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Solides (LPS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Scuola Internazionale Superiore di Studi Avanzati / International School for Advanced Studies (SISSA / ISAS), Laboratoire des Solides Irradiés (LSI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie Physique - Matière et Rayonnement (LCPMR), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Lawrence Berkeley National Laboratory [Berkeley] (LBNL), SLAC National Accelerator Laboratory (SLAC), Stanford University, GREMAN (matériaux, microélectronique, acoustique et nanotechnologies) (GREMAN - UMR 7347), Université de Tours (UT)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Université de Tours-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Electronic properties and materials ,Science ,General Physics and Astronomy ,02 engineering and technology ,01 natural sciences ,General Biochemistry, Genetics and Molecular Biology ,Settore FIS/03 - Fisica della Materia ,Matters Arising ,0103 physical sciences ,lcsh:Science ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,[PHYS]Physics [physics] ,Physics ,Multidisciplinary ,[PHYS.PHYS]Physics [physics]/Physics [physics] ,Condensed matter physics ,General Chemistry ,021001 nanoscience & nanotechnology ,Phase transitions and critical phenomena ,lcsh:Q ,Transient (oscillation) ,[PHYS.COND.CM-SCE]Physics [physics]/Condensed Matter [cond-mat]/Strongly Correlated Electrons [cond-mat.str-el] ,0210 nano-technology ,Ultrashort pulse - Abstract
International audience; Replying to D. Moreno-Mencía et al. Nature Communicationshttps://doi.org/10.1038/s41467-019-11743-3 (2019).
- Published
- 2019
4. Erratum: A microscopic view on the Mott transition in chromium-doped V2O3
- Author
-
Paolo Postorino, B. Mansart, Alexei Barinov, Ole Krogh Andersen, Leonetta Baldassarre, Tanusri Saha-Dasgupta, Karsten Held, E. Papalazarou, Daniele Nicoletti, J. P. Itié, N. Parragh, Stefano Lupi, Philipp Hansmann, Marino Marsi, Pavel Dudin, Jean-Pascal Rueff, Andrea Perucchi, Alessandro Toschi, Giorgio Sangiovanni, Sylvain Ravy, and Fanny Rodolakis
- Subjects
Physics ,Chromium ,Multidisciplinary ,Condensed matter physics ,chemistry ,Bar (music) ,Doping ,General Physics and Astronomy ,chemistry.chemical_element ,General Chemistry ,Metal–insulator transition ,General Biochemistry, Genetics and Molecular Biology ,Mott transition - Abstract
Nature Communications 1, Article number: 105 (2010); published: 02 November 2010; updated: 17 January 2012. In Figure 2 of this Article, panel labels c and d were inadvertently switched. A typographical error was also introduced in the last sentence of the legend, which should have read 'The scale bar in panel c represents 10 μm'.
- Published
- 2012
5. A microscopic view on the Mott transition in chromium-doped V2O3
- Author
-
Fanny Rodolakis, J. P. Itié, Pavel Dudin, Tanusri Saha-Dasgupta, Marino Marsi, Leonetta Baldassarre, Stefano Lupi, Ole Krogh Andersen, Philipp Hansmann, Giorgio Sangiovanni, Kathryn D. Held, Sylvain Ravy, Alexei Barinov, Andrea Perucchi, Paolo Postorino, B. Mansart, Daniele Nicoletti, E. Papalazarou, Jean-Pascal Rueff, N. Parragh, and Alessandro Toschi
- Subjects
phase separation ,metal-to-insulator transition ,Materials science ,FOS: Physical sciences ,General Physics and Astronomy ,chemistry.chemical_element ,02 engineering and technology ,01 natural sciences ,General Biochemistry, Genetics and Molecular Biology ,Condensed Matter - Strongly Correlated Electrons ,Chromium ,0103 physical sciences ,Metal–insulator transition ,010306 general physics ,Condensed Matter::Quantum Gases ,Multidisciplinary ,Strongly Correlated Electrons (cond-mat.str-el) ,Condensed matter physics ,Mott insulator ,Doping ,General Chemistry ,021001 nanoscience & nanotechnology ,Mott transition ,chemistry ,Condensed Matter::Strongly Correlated Electrons ,0210 nano-technology - Abstract
V2O3 is the prototype system for the Mott transition, one of the most fundamental phenomena of electronic correlation. Temperature, doping or pressure induce a metal to insulator transition (MIT) between a paramagnetic metal (PM) and a paramagnetic insulator (PI). This or related MITs have a high technological potential, among others for intelligent windows and field effect transistors. However the spatial scale on which such transitions develop is not known in spite of their importance for research and applications. Here we unveil for the first time the MIT in Cr-doped V2O3 with submicron lateral resolution: with decreasing temperature, microscopic domains become metallic and coexist with an insulating background. This explains why the associated PM phase is actually a poor metal. The phase separation can be associated with a thermodynamic instability near the transition. This instability is reduced by pressure which drives a genuine Mott transition to an eventually homogeneous metallic state., Paper plus supplementary material
- Published
- 2010
6. Reply to: Ultrafast evolution and transient phases of a prototype out-of-equilibrium Mott-Hubbard material.
- Author
-
Boschetto D, Weis M, Zhang J, Caillaux J, Nilforoushan N, Lantz G, Mansart B, Papalazarou E, Moisan N, Grieger D, Perfetti L, Jacques VLR, Bolloc'h DL, Laulhé C, Ravy S, Rueff JP, Glover TE, Hertlein MP, Hussain Z, Song S, Chollet M, Fabrizio M, Marsi M, and Zaghrioui M
- Published
- 2019
- Full Text
- View/download PDF
7. Ultrafast evolution and transient phases of a prototype out-of-equilibrium Mott-Hubbard material.
- Author
-
Lantz G, Mansart B, Grieger D, Boschetto D, Nilforoushan N, Papalazarou E, Moisan N, Perfetti L, Jacques VL, Le Bolloc'h D, Laulhé C, Ravy S, Rueff JP, Glover TE, Hertlein MP, Hussain Z, Song S, Chollet M, Fabrizio M, and Marsi M
- Abstract
The study of photoexcited strongly correlated materials is attracting growing interest since their rich phase diagram often translates into an equally rich out-of-equilibrium behaviour. With femtosecond optical pulses, electronic and lattice degrees of freedom can be transiently decoupled, giving the opportunity of stabilizing new states inaccessible by quasi-adiabatic pathways. Here we show that the prototype Mott-Hubbard material V
2 O3 presents a transient non-thermal phase developing immediately after ultrafast photoexcitation and lasting few picoseconds. For both the insulating and the metallic phase, the formation of the transient configuration is triggered by the excitation of electrons into the bonding a1g orbital, and is then stabilized by a lattice distortion characterized by a hardening of the A1g coherent phonon, in stark contrast with the softening observed upon heating. Our results show the importance of selective electron-lattice interplay for the ultrafast control of material parameters, and are relevant for the optical manipulation of strongly correlated systems.- Published
- 2017
- Full Text
- View/download PDF
8. A microscopic view on the Mott transition in chromium-doped V(2)O(3).
- Author
-
Lupi S, Baldassarre L, Mansart B, Perucchi A, Barinov A, Dudin P, Papalazarou E, Rodolakis F, Rueff JP, Itié JP, Ravy S, Nicoletti D, Postorino P, Hansmann P, Parragh N, Toschi A, Saha-Dasgupta T, Andersen OK, Sangiovanni G, Held K, and Marsi M
- Abstract
V(2)O(3) is the prototype system for the Mott transition, one of the most fundamental phenomena of electronic correlation. Temperature, doping or pressure induce a metal-to-insulator transition (MIT) between a paramagnetic metal (PM) and a paramagnetic insulator. This or related MITs have a high technological potential, among others, for intelligent windows and field effect transistors. However the spatial scale on which such transitions develop is not known in spite of their importance for research and applications. Here we unveil for the first time the MIT in Cr-doped V(2)O(3) with submicron lateral resolution: with decreasing temperature, microscopic domains become metallic and coexist with an insulating background. This explains why the associated PM phase is actually a poor metal. The phase separation can be associated with a thermodynamic instability near the transition. This instability is reduced by pressure, that promotes a genuine Mott transition to an eventually homogeneous metallic state.
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.