1. Melting of hybrid organic-inorganic perovskites.
- Author
-
Shaw BK, Hughes AR, Ducamp M, Moss S, Debnath A, Sapnik AF, Thorne MF, McHugh LN, Pugliese A, Keeble DS, Chater P, Bermudez-Garcia JM, Moya X, Saha SK, Keen DA, Coudert FX, Blanc F, and Bennett TD
- Abstract
Several organic-inorganic hybrid materials from the metal-organic framework (MOF) family have been shown to form stable liquids at high temperatures. Quenching then results in the formation of melt-quenched MOF glasses that retain the three-dimensional coordination bonding of the crystalline phase. These hybrid glasses have intriguing properties and could find practical applications, yet the melt-quench phenomenon has so far remained limited to a few MOF structures. Here we turn to hybrid organic-inorganic perovskites-which occupy a prominent position within materials chemistry owing to their functional properties such as ion transport, photoconductivity, ferroelectricity and multiferroicity-and show that a series of dicyanamide-based hybrid organic-inorganic perovskites undergo melting. Our combined experimental-computational approach demonstrates that, on quenching, they form glasses that largely retain their solid-state inorganic-organic connectivity. The resulting materials show very low thermal conductivities (~0.2 W m
-1 K-1 ), moderate electrical conductivities (10-3 -10-5 S m-1 ) and polymer-like thermomechanical properties., (© 2021. The Author(s), under exclusive licence to Springer Nature Limited.)- Published
- 2021
- Full Text
- View/download PDF