1. A deep-learning framework to predict cancer treatment response from histopathology images through imputed transcriptomics.
- Author
-
Hoang DT, Dinstag G, Shulman ED, Hermida LC, Ben-Zvi DS, Elis E, Caley K, Sammut SJ, Sinha S, Sinha N, Dampier CH, Stossel C, Patil T, Rajan A, Lassoued W, Strauss J, Bailey S, Allen C, Redman J, Beker T, Jiang P, Golan T, Wilkinson S, Sowalsky AG, Pine SR, Caldas C, Gulley JL, Aldape K, Aharonov R, Stone EA, and Ruppin E
- Subjects
- Humans, Gene Expression Profiling methods, Treatment Outcome, Precision Medicine methods, Deep Learning, Neoplasms genetics, Neoplasms pathology, Neoplasms therapy, Transcriptome
- Abstract
Advances in artificial intelligence have paved the way for leveraging hematoxylin and eosin-stained tumor slides for precision oncology. We present ENLIGHT-DeepPT, an indirect two-step approach consisting of (1) DeepPT, a deep-learning framework that predicts genome-wide tumor mRNA expression from slides, and (2) ENLIGHT, which predicts response to targeted and immune therapies from the inferred expression values. We show that DeepPT successfully predicts transcriptomics in all 16 The Cancer Genome Atlas cohorts tested and generalizes well to two independent datasets. ENLIGHT-DeepPT successfully predicts true responders in five independent patient cohorts involving four different treatments spanning six cancer types, with an overall odds ratio of 2.28 and a 39.5% increased response rate among predicted responders versus the baseline rate. Notably, its prediction accuracy, obtained without any training on the treatment data, is comparable to that achieved by directly predicting the response from the images, which requires specific training on the treatment evaluation cohorts., (© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.)
- Published
- 2024
- Full Text
- View/download PDF