1. A lithium-isotope perspective on the evolution of carbon and silicon cycles
- Author
-
Noah J. Planavsky, Ashleigh Von S. Hood, Boriana Kalderon-Asael, Eric J. Bellefroid, Philip A.E. Pogge von Strandmann, John A. Higgins, Jack G. Murphy, Terry T. Isson, Francis A. Macdonald, Dan Asael, A. Joshua West, Joachim A.R. Katchinoff, Chunjiang Wang, Axel Hofmann, Mathieu Dellinger, David S. Jones, Malcolm W. Wallace, and Frantz Ossa Ossa
- Subjects
0106 biological sciences ,Aquatic Organisms ,Geologic Sediments ,Silicon ,Earth science ,chemistry.chemical_element ,Lithium ,010603 evolutionary biology ,01 natural sciences ,Carbon Cycle ,Carbon cycle ,03 medical and health sciences ,Precambrian ,chemistry.chemical_compound ,Isotopes ,Seawater ,14. Life underwater ,030304 developmental biology ,0303 health sciences ,Multidisciplinary ,Crust ,Plants ,Carbon ,chemistry ,13. Climate action ,Environmental science ,Carbonate ,Sedimentary rock - Abstract
The evolution of the global carbon and silicon cycles is thought to have contributed to the long-term stability of Earth's climate1-3. Many questions remain, however, regarding the feedback mechanisms at play, and there are limited quantitative constraints on the sources and sinks of these elements in Earth's surface environments4-12. Here we argue that the lithium-isotope record can be used to track the processes controlling the long-term carbon and silicon cycles. By analysing more than 600 shallow-water marine carbonate samples from more than 100 stratigraphic units, we construct a new carbonate-based lithium-isotope record spanning the past 3 billion years. The data suggest an increase in the carbonate lithium-isotope values over time, which we propose was driven by long-term changes in the lithium-isotopic conditions of sea water, rather than by changes in the sedimentary alterations of older samples. Using a mass-balance modelling approach, we propose that the observed trend in lithium-isotope values reflects a transition from Precambrian carbon and silicon cycles to those characteristic of the modern. We speculate that this transition was linked to a gradual shift to a biologically controlled marine silicon cycle and the evolutionary radiation of land plants13,14.
- Published
- 2021