1. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies
- Author
-
Ik Su Chun, Ungyu Paik, Hoon Kim, Etienne Menard, Matthew Meitl, Inhwa Jung, Jongseung Yoon, Sung Jin Jo, James J. Coleman, John A. Rogers, and Xiuling Li
- Subjects
Multidisciplinary ,Fabrication ,Materials science ,Silicon ,business.industry ,Transistor ,chemistry.chemical_element ,Epitaxy ,Gallium arsenide ,law.invention ,chemistry.chemical_compound ,chemistry ,Photovoltaics ,law ,Night vision ,Optoelectronics ,Wafer ,business - Abstract
Although compound semiconductors like gallium arsenide have a substantial performance advantage over silicon in photovoltaic and optoelectronic applications, these do not outweigh the costly process of growing large, high-quality layers of these materials and transferring them to flexible or transparent substrates for use in devices such as solar cells, night vision cameras and wireless communication systems. But now John Rogers and his team demonstrate a new fabrication approach that may remove this disadvantage. They grow films of GaAs and AlGaAs in thick, multilayered assemblies in a single deposition sequence, then release the individual layers and distribute them over foreign substrates by printing. The technological potential of this strategy to large-area applications is illustrated with the fabrication of GaAs devices such as field-effect transistors on glass and photovoltaic modules on sheets of plastic. Although compound semiconductors like gallium arsenide (GaAs) offer advantages over silicon for photovoltaic and optoelectronic applications, these do not outweigh the costly process of growing large layers of these materials and transferring them to appropriate substrates. However, a new fabrication approach is now demonstrated: films of GaAs and AlGaAs are grown in thick, multilayered assemblies in a single sequence; the individual layers are then released and distributed over foreign substrates by printing. Compound semiconductors like gallium arsenide (GaAs) provide advantages over silicon for many applications, owing to their direct bandgaps and high electron mobilities. Examples range from efficient photovoltaic devices1,2 to radio-frequency electronics3,4 and most forms of optoelectronics5,6. However, growing large, high quality wafers of these materials, and intimately integrating them on silicon or amorphous substrates (such as glass or plastic) is expensive, which restricts their use. Here we describe materials and fabrication concepts that address many of these challenges, through the use of films of GaAs or AlGaAs grown in thick, multilayer epitaxial assemblies, then separated from each other and distributed on foreign substrates by printing. This method yields large quantities of high quality semiconductor material capable of device integration in large area formats, in a manner that also allows the wafer to be reused for additional growths. We demonstrate some capabilities of this approach with three different applications: GaAs-based metal semiconductor field effect transistors and logic gates on plates of glass, near-infrared imaging devices on wafers of silicon, and photovoltaic modules on sheets of plastic. These results illustrate the implementation of compound semiconductors such as GaAs in applications whose cost structures, formats, area coverages or modes of use are incompatible with conventional growth or integration strategies.
- Published
- 2010
- Full Text
- View/download PDF